Vector Keypoints

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Vectors are quantities that have magnitude and direction.

They are usually expressed mathematical in component form and graphically as a straight line with an arrow on it. The arrow represents the direction and the length of the line, the magnitude.

In component form:-

$$
\overrightarrow{A B}=\underline{V}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right] \begin{aligned}
& 2 \text { units parallel to the } x \text {-axis } \\
& 3 \text { units parallel to the y-axis } \\
& 4 \text { units parallel to the z-axis }
\end{aligned}
$$

1. To calculate the magnitude (size) of a vector we use the formula below.

$$
|\underline{V}|=\sqrt{\left(a^{2}+b^{2}+c^{2}\right)} \quad \text { where } \underline{V}=\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right]
$$

2. Vectors are equal if and only if they have the SAME magnitude AND direction.
3. The only vector that does not have a direction by definition is the zero vector.

$$
\underline{V}=0
$$

Vector Keypoints

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
4. We can use the normal rules of addition and subtraction for vectors as long as we apply them to each component in turn.

$$
\underline{a}=\left[\begin{array}{l}
4 \\
3 \\
2
\end{array}\right] \quad \text { and } \underline{b}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] \quad \underline{a}+\underline{b}=\left[\begin{array}{l}
4 \\
3 \\
2
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
3 \\
4
\end{array}\right] \quad \underline{a}-\underline{b}=\left[\begin{array}{l}
4 \\
3 \\
2
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
0
\end{array}\right]
$$

5. The negative of a vector \underline{V} is $-\underline{V}$. It has the same magnitude as \underline{V} but points in the opposite direction.
6. The scalar multiple of a vector \underline{V} in general is given by

$$
\mathrm{k} \underline{V}=k \cdot\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
k \cdot a \\
k \cdot b \\
k \cdot c
\end{array}\right]
$$

k is simply a number and has the following effect:-
$k>1$ increases the vector \underline{v} by a factor of k.
$k<-1$ increases the vector $\underline{\vee}$ by a factor of k in the opposite direction of \underline{V}.

Vector Keypoints

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
7. Position vector: $O A$ written as a is the position vector of A.

A (a, b, c) is an address using coordinates

$$
\underline{a}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \quad \text { instruction from the origin to the point A }
$$

In general to find the position between A and B we have

$$
\overrightarrow{A \mathrm{~B}}=\overrightarrow{A \mathrm{O}}+\overrightarrow{O \mathrm{~B}}=-\underline{a}+\underline{b}=\underline{b}-\underline{a}
$$

8. Points x, y, z are collinear if they lie on the same straight line.

Using the scalar multiply above we can say that if x, y, z are collinear then the following is true.

$$
\overrightarrow{X Y}=k \cdot \overrightarrow{Y Z}
$$

9. The mid-point of A and B in terms of position vectors is given by

$$
\underline{m}=\frac{1}{2} \cdot(\underline{a}+\underline{b})
$$

Vector Keypoints

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
10. If the point P divides the length $A B$ in the ratio $m: n$ then

$$
\overrightarrow{A P}=\frac{m}{(m+n)} \cdot \overrightarrow{A B}
$$

11. To find the angle between 2 vectors a and b say, we use the scalar/dot product formula.

$$
\underline{a} \cdot \underline{b}=|\underline{a}| \cdot|\underline{b}| \cdot \cos \theta
$$

or in component form

$$
\underline{a} \cdot \underline{b}=\left(a_{1} \cdot a_{2}+b_{1} \cdot b_{2}+c_{1} \cdot c_{2}\right)
$$

REMEMBER: WHEN USING THE FORMULA THE VECTORS HAVE TO BE TAIL TO TAIL

12. Two vectors a and b say, are perpendicular to each other if
scalar/dot product formula equals zero.

$$
\underline{a} \cdot \underline{b}=\underline{0}
$$

13. Vectors obey the rules of algebraic addition and subtraction but you cannot multiple or divide by vectors as it does not have any meaning.!

Vector Keypoints

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
14. A unit vector has a magnitude of 1 . The 3 unit vectors parallel to the x, y, z axis are given by

$$
\underline{\mathrm{i}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \underline{\mathrm{j}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \underline{\mathrm{k}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

These 3 vectors form a set of basis vectors since any vector v can be written in terms of them.

$$
\underline{\mathrm{V}}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]=2 \cdot\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+3 \cdot\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+4 \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
\underline{\mathrm{V}}=2 \cdot \underline{\mathrm{i}}+3 \cdot \underline{\mathrm{j}}+4 \cdot \underline{\mathrm{k}}
$$

Note that $\underline{i}, \underline{j}, \underline{\mathrm{k}}$ are perpendicular to each other since

$$
\underline{\mathrm{i}} \cdot \underline{\mathrm{j}}=\underline{\mathrm{j}} \cdot \underline{\mathrm{k}}=\underline{\mathrm{i}} \cdot \underline{\mathrm{k}}=\underline{0}
$$

Also

$$
\underline{\mathrm{i}} \cdot \underline{\mathrm{i}}=\underline{\mathrm{j}} \cdot \underline{\mathrm{j}}=\underline{\mathrm{k}} \cdot \underline{\mathrm{k}}=\underline{1}
$$

