Higher Mathematics

Specimen NAB Assessment

UNIT 2

Specimen NAB Assessment

Outcome 1

1. Show that $(x+2)$ is a factor of $f(x)=x^{3}-2 x^{2}-4 x+8$ and hence factorise fully $f(x)$.
2. Use the discriminant to determine the nature of the roots of the equation $3 x^{2}+4 x-2=0$.

Outcome 2

3. Find $\int \frac{6}{x^{3}} d x$, where $x \neq 0$.
4. The curve $y=x^{3}(3-x)$ is shown in the diagram below.

Calculate the shaded area enclosed between the curve and the x-axis between $x=0$ and $x=3$.
5. The diagram shows the line with equation $y=2 x-3$ and the curve with equation $y=x^{2}-5 x-3$.

Write down the integral which represents the shaded area.
Do not carry out the integration.

Outcome 3

6. Solve the equation $\sqrt{2} \sin 2 x=1$ for $0 \leq x<\pi$.
7. The diagram below shows two right-angled triangles.

(a) Write down the values of $\sin x$ and $\cos y$.
(b) By expanding $\cos (x+y)$ show that the exact value of $\cos (x+y)$ is $-\frac{16}{65}$.
8. (a) Express $\sin 15^{\circ} \cos x^{\circ}+\cos 15^{\circ} \sin x^{\circ}$ in the form $\sin \left(a^{\circ}+b^{\circ}\right)$.
(b) Use your answer from part (a) to solve the equation $\sin 15^{\circ} \cos x^{\circ}+\cos 15^{\circ} \sin x^{\circ}=\frac{\sqrt{3}}{2}$ for $0<x<360$.

Outcome 4

9. (a) A circle has radius 7 units and centre $(2,-3)$.

Write down the equation of the circle.
(b) A circle has equation $x^{2}+y^{2}-10 x+6 y-3=0$.

Write down its radius and the coordinates of its centre.
10. Show that the straight line $y=-2 x-3$ is a tangent to the circle with equation $x^{2}+y^{2}+6 x+4 y+8=0$.
11. The point $\mathrm{P}(10,5)$ lies on the circle with centre $(-2,0)$, as shown in the diagram below.

Find the equation of the tangent to the circle at P .

Marking Instructions

Pass Marks

Outcome 1	Outcome 2	Outcome 3	Outcome 4
$\frac{4}{6}$ $\boxed{8}$ 11 $\boxed{7}$		$\boxed{10}$	

Outcome 1 - Polynomials and Quadratics	
1. Since $f(-2)=0,(x+2)$ is a factor. $\begin{aligned} f(x) & =(x+2)(x-4 x+4)^{\checkmark} \\ & =(x+2)(x-2)(x-2)^{\checkmark} \end{aligned}$	- Know to evaluate $f(-2)$ - Complete evaluation and conclusion - Quadratic factor - Factorise quadratic
2. $\begin{aligned} & b^{2}-4 a c \\ = & 4^{2}-4 \times 3 \times(-2) \\ = & 40 \end{aligned}$ Since $b^{2}-4 a c>0$, the roots are real and distinct.	- Use the discriminant - Calculate discriminant and state nature of roots
Outcome 2 - Integration	
$\text { 3. } \begin{aligned} \int \frac{6}{x^{3}} d x & =\int\left(6 x^{-3}\right) d x \checkmark \\ & =\frac{6 x^{-2}}{-2}+c \\ & =-3 x^{-2} \checkmark+c \checkmark \end{aligned}$	- Express in standard form - Integrate term with negative power - Constant of integration
$\text { 4. } \begin{aligned} \int_{0}^{3} \checkmark x^{3}(3-x) d x & =\int_{0}^{3 \checkmark}\left(3 x^{3}-x^{4}\right) d x \\ & =\left[\frac{3 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{3} \checkmark \\ & =\left(\frac{3}{4}(3)^{4}-\frac{1}{5}(3)^{5}\right)-0 \checkmark \\ & =\frac{243}{20} \checkmark\left(\text { or } 12 \frac{3}{20}\right) \end{aligned}$	- Know to integrate with limits - Use correct limits - Integrate - Process limits - Complete process

5. $\begin{gathered} x^{2}-5 x-3=2 x-3 \\ x^{2}-7 x=0 \\ x(x-7)=0 \\ x=0 \quad \text { or } \quad x=7 \end{gathered}$ Shaded area is $\int_{0}^{7}\left((2 x-3)-\left(x^{2}-5 x-3\right)\right) d x \checkmark$ square units.	- Strategy to find intersection - Solve quadratic - Use $\int($ upper - lower $) d x$ with limits from quadratic
Outcome 3-Trigonometry	
6. $\quad \sin 2 x=\frac{1}{\sqrt{2}} \checkmark$ $\begin{aligned} 2 x & =\frac{\pi}{4} \quad \text { or } \quad \\ & \pi-\frac{\pi}{4} \\ x & =\frac{\pi}{8} \checkmark \text { or } \\ & \frac{3 \pi}{8} \checkmark \end{aligned}$	- Rearrange to standard form - One solution - Second solution
7. (a) $\left.\begin{array}{l} \mathrm{AC}=\sqrt{9^{2}+12^{2}}=15 \\ \mathrm{DF}=\sqrt{10^{2}+24^{2}}=26 \end{array}\right\} \checkmark \begin{aligned} & \sin x=\frac{9}{15}=\frac{3}{5} \quad \text { and } \quad \cos x=\frac{10}{26}=\frac{5}{13} \end{aligned}$	- Calculate remaining sides - $\sin x$ and $\cos y$
$\text { (b) } \begin{aligned} \cos (x+y) & =\cos x \cos y-\sin x \sin y \\ & =\frac{4}{5} \times \frac{5}{13}-\frac{3}{5} \times \frac{12}{13} \\ & =\frac{20}{65}-\frac{36}{65} \\ & =-\frac{16}{65} \end{aligned}$	- Use compound angle formula - Substitute values
8. (a) $\sin 15^{\circ} \cos x^{\circ}+\cos 15^{\circ} \sin x^{\circ}=\sin \left(15^{\circ}+x^{\circ}\right) \checkmark$	- Use compound angle formula
	- Substitute $\sin \left(15^{\circ}+x^{\circ}\right)$ - Process $\sin ^{-1}$ - One solution - Second solution

Outcome 4 - Circles	
9. (a) $(x-2)^{2}+(y+3)^{2} \checkmark=49 \checkmark$	- Centre - Square of radius
(b) The centre is $(5,-3) \checkmark$ The radius is $\sqrt{(-5)^{2}+3^{2}-(-3)} \checkmark=\sqrt{37} \checkmark$	- State centre - Know how to calculate radius - Process radius
10. $\begin{aligned} x^{2}+y^{2}+6 x+4 y+8 & =0 \\ x^{2}+(-2 x-3)^{2}+6 x+4(-2 x-3)+8 & =0 \\ 5 x^{2}+10 x+5 & =0 \\ x^{2}+2 x+1 & =0 \\ b^{2}-4 a c & =2^{2}-4 \times 1 \times 1 \\ & =16-16 \\ & =0 \checkmark \end{aligned}$ Since the discriminant is zero, the line is a tangent to the circle. \checkmark	- Strategy for finding intersection - Express in standard form - Know to calculate discriminant - Calculate discriminant - Conclusion
11. $m_{\mathrm{PC}}=\frac{5-0}{10+2} \checkmark=\frac{5}{12} \checkmark$ So $m_{\mathrm{tgt}}=-\frac{12}{5} \checkmark$ since the radius and tangent are perpendicular. $\begin{aligned} y-5 & =-\frac{12}{5}(x-10) \\ 12 x+5 y-145 & =0 \end{aligned}$	- Know how to find gradient of radius - Process gradient of radius - Gradient of tangent - Equation of tangent

1. Show that $(x+2)$ is a factor of $g(x)=x^{3}+4 x^{2}+x-6$, and express $g(x)$ in fully factorised form.
2. Use the discriminant to determine the nature of the roots of the equation

$$
\begin{equation*}
3 x^{2}+5 x+1=0 \tag{2}
\end{equation*}
$$

Outcome 2

3. Find $\int \frac{1}{x^{3}} d x$.
4. Calculate the shaded area shown in the diagram.

5. The diagram shows the line with equation $y=x+5$ and the curve with equation $y=5+4 x-x^{2}$.

Write down the integral which represents the shaded area.
Do not carry out the integration.

Outcome 3

6. Solve algebraically the equation $2 \sin 2 x=\sqrt{3}$ for $0 \leq x<\pi$.
7. The diagram below shows two right-angled triangles $P Q R$ and SRT.

(a) Write down the values of $\cos x^{\circ}$ and $\sin y^{\circ}$.
(b) By expanding $\sin (x+y)^{\circ}$ show that the exact value of $\sin (x+y)^{\circ}$ is $\frac{8}{\sqrt{80}}$.
8. (a) Express $\cos x^{\circ} \cos 30^{\circ}-\sin x^{\circ} \sin 30^{\circ}$ in the form $\cos (\mathrm{A}+\mathrm{B})^{\circ}$.
(b) Hence solve the equation $\cos x^{\circ} \cos 30^{\circ}-\sin x^{\circ} \sin 30^{\circ}=\frac{1}{4}$ for $0<x<360$.

Outcome 4

9. (a) A circle of radius 6 units has as its centre the point $\mathrm{C}(4,-1)$. Write down the equation of this circle.
(b) A circle has equation $x^{2}+y^{2}-4 x+2 y-4=0$. Write down the coordinates of its centre and calculate its radius.
10. Show that the line with equation $y=5-2 x$ is a tangent to the circle with equation $x^{2}+y^{2}+6 x-2 y-10=0$.
11. A circle has as its centre the point $C(-3,2)$, as shown in the diagram.

The point $\mathrm{P}(-9,4)$ lies on the circumference of the circle.

Find the equation of the tangent at P .

1. Show that $(x-1)$ is a factor of $f(x)=x^{3}+3 x^{2}-4$, and express $f(x)$ in fully factorised form.
2. Use the discriminant to determine the nature of the roots of the equation

$$
\begin{equation*}
4 x^{2}-6 x+3=0 \tag{2}
\end{equation*}
$$

Outcome 2

3. Find $\int\left(\frac{3}{x^{4}}+1\right) d x$.
4. Calculate the shaded area shown in the diagram.

5. The diagram shows the curves with equations $y=x^{2}-x+3$ and $y=3+2 x-x^{2}$. Write down the integral which represents the shaded area.

Do not carry out the integration.

Outcome 3

6. Solve algebraically the equation $\sqrt{3} \tan 2 x=1$ for $0 \leq x<\pi$.
7. The diagram shows two right-angled triangles EFG and EHG.
$\angle F E G=x^{\circ}$ and $\angle H E G=y^{\circ}$.

(a) Write down the values of $\sin x^{\circ}$ and $\cos y^{\circ}$.
(b) By expanding $\cos (x+y)^{\circ}$ show that the exact value of $\cos (x+y)^{\circ}$ is $\frac{3}{5}$.
8. (a) Express $\sin x^{\circ} \cos 20^{\circ}-\cos x^{\circ} \sin 20^{\circ}$ in the form $\sin (\mathrm{A}-\mathrm{B})^{\circ}$.
(b) Hence solve the equation $\sin x^{\circ} \cos 20^{\circ}-\cos x^{\circ} \sin 20^{\circ}=\frac{4}{9}$ for $0<x<180$.

Outcome 4

9. (a) A circle has radius 10 units and centre (5,-2).

Write down the equation of the circle.
(b) A circle has equation $x^{2}+y^{2}-2 x+10 y+1=0$.

Write down its radius and the coordinates of its centre.
10. Show that the line with equation $y=x-10$ is a tangent to the circle with equation $x^{2}+y^{2}-6 x+6 y+10=0$.
11. A circle has AB as a diameter, as shown in the diagram. A and B have coordinates $(-2,5)$ and $(10,8)$ respectively. Find the equation of the tangent at B .

1. Show that $(x+3)$ is a factor of $f(x)=x^{3}+x^{2}-5 x+3$, and express $f(x)$ in fully factorised form.
2. Use the discriminant to determine the nature of the roots of the equation

$$
\begin{equation*}
2 x^{2}-5 x+3=0 . \tag{2}
\end{equation*}
$$

Outcome 2

3. Find $\int \frac{12}{x^{5}} d x$.
4. Calculate the shaded area shown in the diagram.

5. The diagram shows the curve with equation $y=x^{2}-8 x+18$ and the line $x+y=18$.

Write down the integral which represents the shaded area.
Do not carry out the integration.

Outcome 3

6. Solve algebraically the equation $\sqrt{2} \cos 2 x=1$ for $0 \leq x<\pi$.
7. The diagram shows two right-angled triangles ABC and ABD .
$\angle D A B=x^{\circ}$ and $\angle C A B=y^{\circ}$.

(a) Write down the values of $\cos x^{\circ}$ and $\sin y^{\circ}$.
(b) By expanding $\cos (x-y)^{\circ}$ show that the exact value of $\cos (x-y)^{\circ}$ is $\frac{18}{4 \sqrt{24}}$.
8. (a) Express $\sin x^{\circ} \cos 35^{\circ}+\cos x^{\circ} \sin 35^{\circ}$ in the form $\sin (\mathrm{A}+\mathrm{B})^{\circ}$.
(b) Hence solve the equation $\sin x^{\circ} \cos 35^{\circ}+\cos x^{\circ} \sin 35^{\circ}=\frac{7}{11}$ for $0<x<180$.

Outcome 4

9. (a) A circle has a radius of 1 unit and centre ($-2,6$).

Write down the equation of this circle.
(b) A circle has equation $x^{2}+y^{2}-6 x+5=0$.

Write down its radius and the coordinates of its centre.
10. Show that the line with equation $y=17-4 x$ is a tangent to the circle with equation $x^{2}+y^{2}+8 x+2 y-51=0$.
11. A circle has as its centre the point $\mathrm{C}(5,1)$. The point $\mathrm{P}(9,3)$ lies on its circumference. Find the equation of the tangent at P .

Practice Assessment 1

Outcome 1: 1. proof,$g(x)=(x+2)(x+3)(x-1)$
2. $b^{2}-4 a c=13 \quad \therefore$ real, distinct and irrational

Outcome 2:
3. $\frac{x^{-2}}{-2}+C\left(-\frac{1}{2 x^{2}}+C\right)$
4. $6 \frac{3}{4}$ units 2
5. $\int_{0}^{3} 5+4 x-x^{2}-(x+5) d x \Rightarrow \int_{0}^{3} 3 x-x^{2} d x$

Outcome 3 :
6. $\left\{\frac{\pi}{6}, \frac{\pi}{3}\right\}$
7.
(a) $\quad \cos x=\frac{3}{\sqrt{10}}, \sin y=\frac{2}{\sqrt{8}}$
8.
(a) $\cos (x+30)^{\circ}$
(b) $\left\{45 \cdot 5^{\circ}, 254 \cdot 5^{\circ}\right\}$
(b) proof

Outcome 4 : 9.
(a) $(x-4)^{2}+(y+1)^{2}=36$
(b) $\mathrm{C}(2,-1), \quad r=3$
10. 1 root, $x=1, \therefore$ a tangent
11. $y-4=3(x+9) \Rightarrow y=3 x+31$

$\underline{\text { Practice Assessment } 2}$

Outcome 1: 1. proof , $f(x)=(x-1)(x+2)(x+2)$
2. $b^{2}-4 a c=-12 \quad \therefore$ not real

Outcome 2 :
3. $\frac{3 x^{-3}}{-3}+x+C\left(-\frac{1}{x^{3}}+x+C\right)$
4. 9 units 2
5. $\int_{0}^{3 / 2} 3+2 x-x^{2}-\left(x^{2}-x+3\right) d x \Rightarrow \int_{0}^{3 / 2} 3 x-2 x^{2} d x$

Outcome 3 :
6. $\left\{\frac{\pi}{12}, \frac{7 \pi}{12}\right\}$
7. (a) $\sin x=\frac{7}{25}, \cos y=\frac{20}{25}$
8.
(a) $\sin (x-20)^{\circ}$
(b) $\left\{46 \cdot 4^{\circ}, 173 \cdot 6^{\circ}\right\}$
(b) proof

Outcome 4 : 9.
(a) $(x-5)^{2}+(y+2)^{2}=100$
(b) $\mathrm{C}(1,-5) \quad, \quad r=5$
10. 1 root, $x=5, \therefore$ a tangent
11. $y-8=-4(x-10) \Rightarrow y=-4 x+48$

Practice Assessment 3

Outcome 1 : 1. proof,$g(x)=(x+3)(x-1)(x-1)$
2. $b^{2}-4 a c=1 \quad \therefore$ real, distinct and rational

Outcome 2 :
3. $\frac{12 x^{-4}}{-4}+C\left(-\frac{3}{x^{4}}+C\right)$
4. $6 \frac{2}{3}$ units 2
5. $\int_{0}^{7} 18-x-\left(x^{2}-8 x+18\right) d x \Rightarrow \int_{0}^{7} 7 x-x^{2} d x$

Outcome 3 :
6. $\left\{\frac{\pi}{8}, \frac{7 \pi}{8}\right\}$ 7. (a) $\cos x=\frac{\sqrt{15}}{\sqrt{24}}, \sin y=\frac{1}{4}$
(b) proof
8.
(a) $\sin (x+35)^{\circ}$
(b) $\left\{4 \cdot 5^{\circ}, 105 \cdot 5^{\circ}\right\}$

Outcome 4 : 9.
(a) $(x+2)^{2}+(y-6)^{2}=1$
(b) $\mathrm{C}(3,0), r=2$
10. 1 root, $x=4, \therefore$ a tangent
11. $y-3=-2(x-9) \Rightarrow y=-2 x+21$

