Practice Unit tests

Use this booklet to help you prepare for all unit tests in Higher Maths.

Your formal test will be of a similar standard.

- Read the description of each assessment standard carefully to make sure you know what you could be tested on.
- Work through each practice test to check your understanding. There are slight differences and it is important that you do your best to prepare for these.
- Reasoning problems are identifiable in the booklet with a #2.1 or #2.1.

If you come across something you don't understand or can't remember then do something about it:

- Look in your course notes for a similar example
- Look in your textbook for notes and worked examples
- Look on SCHOLAR for further explanation and more practice questions
- Look on the Internet notes and worked examples (HSN is a useful site http://www.hsn.uk.net/)
- Ask your teacher or anyone else that is able to help you with Maths

Contents:

<u>Applications</u>	
Basic skills	Page 3
My assessment record	Page 4
Practice Tests and Answers:	
1.1 Applying algebraic skills to rectilinear shapes	Page 5
1.2 Applying algebraic skills to circles	Page 9
1.3 Applying algebraic skills to sequences	Page 12
1.4 Applying calculus skills to optimisation and area	Page 15
Expressions and Functions	
Basic skills	Page 19
My assessment record	Page 20
Practice Tests and Answers:	
1.1 Applying algebraic skills to logarithms and exponentials	Page 21
1.2 Applying trigonometric skills to manipulating expressions	Page 23
1.3 Applying algebraic and trigonometric skills to functions	Page 26
1.4 Applying geometric skills to vectors	Page 34
Relationships and Calculus	
Basic skills	Page 41
My assessment record	Page 42
Practice Tests and Answers:	
1.1 Applying algebraic skills to solve equations	Page 43
1.2 Applying trigonometric skills to solve equations	Page 45
1.3 Applying calculus skills of differentiation	Page 47
1.4 Applying calculus skills of integration	Page 49

BANCHORY ACADEMY REVISION GUIDES

Page 51

Assessment Standards	Making assessment judgements
1.1 Applying algebraic skills to rectilinear shapes	 The sub-skills in the Assessment Standard are: finding the equation of a line parallel to, and a line perpendicular to, a given line using m = tan θ to calculate a gradient or angle
1.2 Applying algebraic skills to circles	The sub-skills in the Assessment Standard are: ◆ determining and using the equation of a circle ◆ using properties of tangency in the solution of a problem
1.3 Applying algebraic skills to sequences	The sub-skills in the Assessment Standard are: ◆ determining a recurrence relation from given information and using it to calculate a required term ◆ finding and interpreting the limit of a sequence, where it exists
1.4 Applying calculus skills to optimisation and area	 The sub-skills in the Assessment Standard are: determining the optimal solution for a given problem finding the area between a curve and the x-axis finding the area between two curves or a straight line and a curve
2.1 Interpreting a situation where mathematics can be used and identifying a valid strategy	Assessment Standard 2.1 and 2.1 are transferable across Units and can be attached to any of the sub-skills listed above. #2.1 is mostly about choosing an appropriate strategy. This skill is usually required to make a good start on a problem.
2.2 Explaining a solution and, where appropriate, relating it to context	#2.2 is about how well you answer a question, often with a summary statement at the end of a question.

My assessment record: Mathematics: Applications (Higher)

Keep this up to date as you go along so that you know if you have any areas that you need to do more work on

Mark(s)	Pass/Fail	Mark(s)	Pass/Fail
			+
	1.1 to 1.4 you no	1.1 to 1.4 you need to get at least h	1 1 to 1 4 you need to get at least half of the marks ov

To pass each of the assessment standards 1.1 to 1.4 you need to get at least half of the marks overall or half of the marks for each sub-skill.

Assessment standards 2.1 and 2.2 can be gained across the whole course (you have to show that you can apply each skill on 2 separate occasions, i.e. twice for #2.1 and twice for #2.2) so if you don't manage to get it in this unit you need to make sure that you do in either of the other units.

Assessment standard: 1.1 Applying algebraic skills to rectilinear shapes

Sub-skills	 finding the equation of a line parallel to, and a line perpendicular to, a given line
	• using $m = \tan \theta$ to calculate a gradient or angle

Practice test 1

- Find the equation of the line passing thorough (5, -10), parallel to the line with equation 4x + y 8 = 0.
- 2. ABCD is a rhombus. Diagonal BD has equation y = 3x 2. A has coordinates (-4, 1).

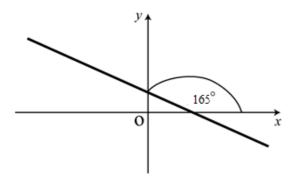
Find the equation of the diagonal AC



3 A ski slope is categorised by its gradient as shown in the table.

Dry slope category	Steepness (s) of slope	
Teaching and general skiing	0 ≤ s ≤ 0·35	
Extreme skiing	s > 0·35	

(a) What is the gradient of the line shown in the diagram?



(b) To which category does the ski slope represented by the line in part (a) belong?

Give a reason for your answer.

 $(#^{2.2})$

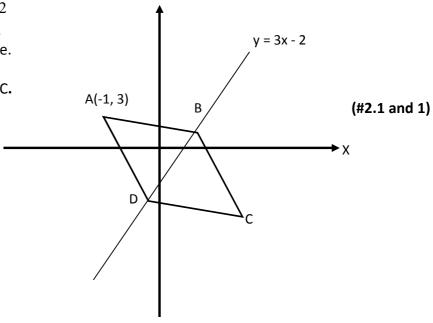
(1)

2.

- A straight line has the equation -6x + y 2 = 0. Write down the equation of the line parallel to the given line, which passes through the point (3, -5).
 - ABCD is a rhombus. (2)

Diagonal BD has equation y = 3x - 2 and point **A** has coordinates (-1, 3). Note that the diagram is not to scale.

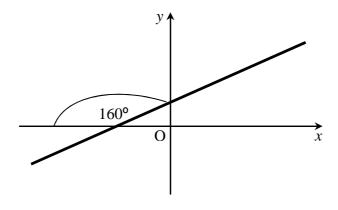
Find the equation of the diagonal AC.



3 A ramp is categorised by its gradient as shown in the table.

Category	Steepness (s) of ramp	
Safe	$0 < s \le 0.3$	
Dangerous	s > 0.3	

Which category does the ramp in the diagram below belong to? Explain your answer fully.



(#2.2)

A straight line has the equation 4x + y + 3 = 0. Write down the equation of the line perpendicular to the given line, which passes through the point (-3,1).

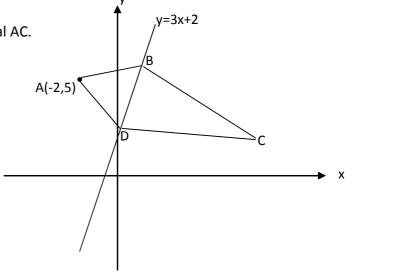
(3)

2 ABCD is a kite.

3

Diagonal BD has equation y = 3x + 2 and point A has coordinates (-2,5). Note that the diagram is not to scale.

Find the equation of the diagonal AC.



(2 + #2.2)

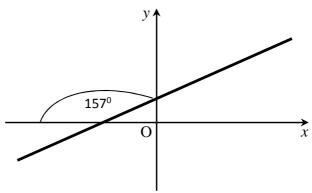
(2)

4 The ramp on a livestock trailer is categorised by its gradient as shown in the table.

Calculate the size of the obtuse angle between the line y = 4x - 3 and the x-axis.

Livestock category	Steepness (s) of ramp	
Pigs/horses	0 < s < 0.36	
Sheep/cattle	0 < s < 0.5	

Which animals would be able to use the ramp in the diagram below? Explain your answer fully.



(1 + #2.2)

Assessment standard: 1.1 Applying algebraic skills to rectilinear shapes

Answers to Practice Tests

Practice test 1

- 1 y = -4x + 10
- 2 x + 3y + 1 = 0
- 3 gradient, m = -0.268

Therefore the steepness of the slope is 0.268 which means the slope is for teaching and general skiing because $0 \le 0.268 \le 0.35$

Practice test 2

- 1 y = 6x 13
- 2 x + 3y 2 = 0
- 3 angle = 20° , gradient, m = 0.364

Therefore the steepness of the ramp is 0.364 which dangerous because 0.364 > 0.3

Practice test 3

- 1 x 4y + 7 = 0
- 2 x + 3y 13 = 0
- 3 angle = 23°,

gradient, m = 0.424

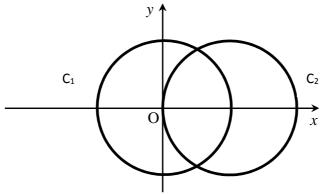
Therefore the steepness of the ramp is 0.424 which means it is only for sheep/cattle because 0.424 < 0.5 but it is not less than 0.35

Assessment standard: 1.2 Applying algebraic skills to circles

Sub-skills	♦ determining and using the equation of a circle
	 using properties of tangency in the solution of a problem

Practice test 1

1 The diagram shows two identical circles, C₁ and C₂. C₁ has centre the origin and radius 8 units.



The circle, C_{2,} passes through the origin.

The x-axis passes through the centre of C_2 .

Find the equation of circle C₂.

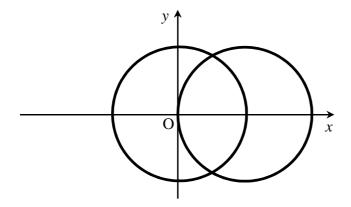
(#^{2.1} and 1)

2 Determine if the line y = 3x + 10 is a tangent to the circle

$$x^2 + y^2 - 8x - 4y - 20 = 0$$

(3 and #^{2.2})

1 The diagram shows two congruent circles. One circle has centre the origin and diameter 18 units.



Find the equation of the other circle which passes through the origin and whose centre lies on the *x*-axis.

(#2.1 and 1)

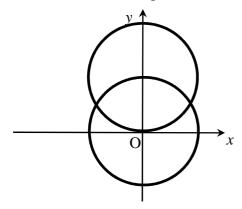
Determine algebraically if the line y = -3x - 10 is a tangent to the circle

$$(x-4)^2 + (y+2)^2 = 40$$

(3 + #2.2)

Practice test 3

The diagram shows two congruent circles.One circle has centre the origin and diameter 16 units.



Find the equation of the other circle which passes through the origin and whose centre lies on the *y*-axis.

(2)

Determine algebraically if the line y = x + 9 is a tangent to the circle $(x + 3)^2 + (y - 2)^2 = 8$

(3 + #2.2)

Assessment standard: 1.2 Applying algebraic skills to circles

Answers to Practice Tests

Practice test 1

- $1 \qquad (x-8)^2 + y^2 = 64$
- Solving simultaneously gives: $10x^2 + 61x + 40 = 0$ Testing for discriminant gives: $b^2 - 4ac = 2121$ Since $b^2 - 4ac > 0$ there are 2 distinct points of intersection so therefore the line is not a tangent to the circle.

Practice test 2

- $1 \qquad (x-9)^2 + y^2 = 81$
- Solving simultaneously gives: $5x^2 26x + 20 = 0$ Testing for discriminant gives: $b^2 - 4ac = 356$ Since $b^2 - 4ac > 0$ there are 2 distinct points of intersection so therefore the line is not a tangent to the circle.

Practice test 3

- $1 x^2 + (y 8)^2 = 64$
- Solving simultaneously gives: $x^2 + 10x + 25 = 0$ Testing for discriminant gives: $(x + 5)^2 = 0$, x = -5 or x = -5Since the roots are real and equal there is only one point of intersection so therefore the line is a tangent to the circle.

Assessment standard: 1.3 Applying algebraic skills to sequences

Sub-skills	 determining a recurrence relation from given information and using
	it to calculate a required term
	 finding and interpreting the limit of a sequence, where it exists

Practice test 1

- A sequence is defined by the recurrence relation $u_{n+1} = mu_n + c$ where m and c are constants. It is known that $u_1 = 3$, $u_2 = 7$, and $u_3 = 23$
 - Find the recurrence relation described by the sequence and use it to find the value of u_s .

On a particular day at 09:00, a doctor injects a first dose of 400 mg of medicine into a patient's bloodstream. The doctor then continues to administer the medicine in this way at 09:00 each day.

The doctor knows that at the end of the 24-hour period after an injection, the amount of medicine in the bloodstream will only be 11% of what it was at the start.

(a) Set up a recurrence relation which shows the amount of medicine in the bloodstream immediately after an injection.

(1)

(4)

The patient will overdose if the amount of medicine in their bloodstream exceeds 500 mg.

(b) In the long term, if a patient continues with this treatment, is there a danger they will overdose?

Explain your answer.

(2 + #2.2)

Practice Test 2

A Regular Saver Account offers 2% interest per year. Interest on the account is paid at the **end** of each year.

You open this account with your first deposit of £180 at the start of a particular year and deposit £700 into the account at the start of each subsequent year.

 u_n represents the amount of money in the account n years after the account is opened, then $u_{n+1} = au_n + b$.

State the values of a and b.

Given that u_0 is the initial deposit, calculate the value of u_3 .

Two sequences are generated by the recurrence relations $u_{n+1} = au_n + 2$ and $v_{n+1} = 4av_n + 3$ with $u_0 = 1$ and $v_0 = -1$. The two sequences approach the same limit as $n \to \infty$.

Determine the value of a and hence evaluate the limit. (#^{2.1} and 2)

(2)

A sequence is defined by the recurrence relation $u_{n+1} = mu_n + c$ where m and c are constants. It is known that $u_1 = 3, u_2 = 2, u_3 = -1$.

Find the recurrence relation described by the sequence and use it to find the value of u_7

(4)

On a particular day at 07:00, a vet injects a first dose of 65 mg of medicine into a dog's bloodstream. The vet then continues to administer the medicine in this way at 07:00 each day.

The vet knows that at the end of the 24-hour period after an injection, the amount of medicine in the bloodstream will only be 18% of what it was at the start.

(a) Set up a recurrence relation which shows the amount of medicine in the bloodstream immediately after an injection.

The dog will overdose if the amount of medicine in its bloodstream exceeds 85 mg.

(b) In the long term, if the dog continues with this treatment, is there a danger it will overdose? **Explain your answer.**

(3 + #2.2)

Assessment standard: 1.3 Applying algebraic skills to sequences

Answers to Practice Tests

Practice test 1

1
$$u_2 = mu_1 + c \Rightarrow 7 = 3m + c$$

 $u_3 = mu_2 + c \Rightarrow 23 = 7m + c$
 $m = 4, c = -5$
 $u_{n+1} = 4u_n - 5$
 $u_5 = 4 \times 87 - 5 = 343$

2
$$U_{n+1} = 0.11U_n + 400$$

 $L = 0.11L + 400$ or $L = \frac{400}{1 - 0.11}$
 $L = 449.44$

449.44 < 500 so looks like the patient would not be in danger of overdosing

Practice test 2

1
$$a = 1.02, b = 700$$

 $u_1 = 883.6, u_2 = 160.272, u_3 = 2333.297...$

2 know to equate, e.g.
$$\frac{2}{1-a} = \frac{3}{1-4a}$$

$$a = \frac{1}{5} \text{ (or 0.2)}$$

$$L = \frac{2}{1-0.2} = \frac{2}{0.8} = 2.5$$

Practice test 3

1
$$u_2 = mu_1 + c$$
, $2 = 3m+c$
 $u_3 = mu_2 + c$, $-1 = 2m + c$
 $m = 3$, $c = -7$
 $u_{n+1} = 3u_n - 7$
 $u_7 = -361$

2
$$u_{n+1} = 0.18u_n + 65$$

 $L = 0.18 \times L + 65 \text{ or } L = \frac{65}{1 - 0.18}$
 $L = 79.268 \text{ or } 79\frac{11}{41}$

79.268 < 85 so looks like the dog would not be in danger of overdosing

Assessment standard: 1.4 Applying calculus skills to optimisation and area

 determining the optimal solution for a given problem finding the area between a curve and the x-axis
 ♦ finding the area between two curves or a straight line and a curve

Practice test 1

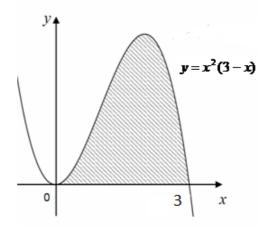
A box with a square base and open top has a surface area of 768 cm². The volume of the box can be represented by the formula:

$$V(x) = 75x - \frac{1}{9}x^3$$

Find the value of x which maximises the volume of the box.

(5)

The curve with equation $y = x^2(3 - x)$ is shown in the diagram.

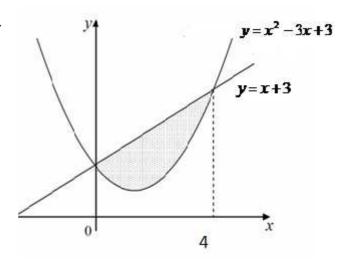


Calculate the shaded area.

(#2.1 + 4)

3 The line with equation y = x + 3 meets the curve with equation $y = x^2 - 3x + 3$

when x = 0 and x = 4 as shown in the diagram.



Calculate the shaded area.

(5)

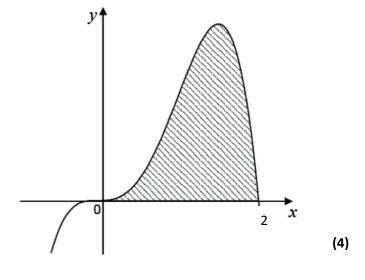
1 The area of a rectangle can be represented by the formula

$$A(x) = 27x - 3x^3$$
, where $x > 0$.

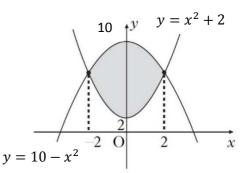
Find the value of x which maximises the area of the rectangle. Justify your answer.

The curve with equation $y = x^3(2 - x)$ is 2 shown in the diagram.

Calculate the shaded area.



The diagram shows graphs with equations 3 $y = 10 - x^2$ and $y = x^2 + 2$



Which of the following integrals represents the shaded area? (a)

A
$$\int_{2}^{10} (2x^2 - 8) dx$$
 B $\int_{-2}^{2} (8 - 2x^2) dx$ C $\int_{-2}^{2} (2x^2 - 8) dx$ D $\int_{2}^{10} (8 - 2x^2) dx$ (1)

Calculate the shaded area. (b)

(3)

(5)

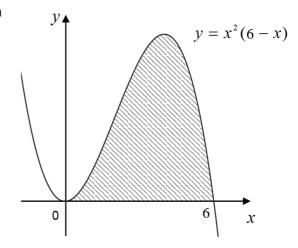
A box with a square base and open top has a surface area of 108 cm². The volume of the box can be represented by the formula:

$$V(x) = 27x - \frac{1}{4}x^3.$$

Find the value of x which maximises the volume of the box.

(4 + #2.2)

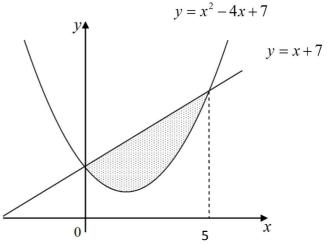
The curve with equation $y = x^2(6 - x)$ is shown In the diagram.



Calculate the shaded area.

(4)

The line with equation y = x+7 and the curve with equation $y = x^2 - 4x + 7$ are shown in the diagram.



The line and curve meet at the points where x = 0 and x = 5.

Calculate the shaded area.

(5)

Assessment standard: 1.4 Applying calculus skills to optimisation and area

Answers to Practice Tests

Practice Test 1

1
$$V' = 75 - \frac{1}{3}x^2 = 0$$
 stated explicitly $x = \pm 15$ use 2^{nd} derivative or nature table maximum at $x = 15$

2
$$\frac{27}{4}$$
 or $6\frac{3}{4}$ square units

3
$$\frac{32}{3}$$
 or $10\frac{2}{3}$ square units

Practice Test 2

1
$$27 - 9x^2 = 0$$
 stated explicitly $x = \pm \sqrt{3}$ Uses nature table or 2^{nd} derivative Max area when $x = \sqrt{3}$

2
$$\frac{8}{5}$$
 square units or equivalent

Area =
$$21\frac{1}{3}$$
 square units, or equivalent

Practice Test 3

1
$$V'(x) = 27 - \frac{3}{4}x^2$$
 and $V'(x) = 0$
 $x = 6$
nature table or 2^{nd} derivative
Maximum when $x = 6$

2 108 square units

3
$$\frac{125}{6}$$
 or $20\frac{5}{6}$ square units

Assessment Standards	Making assessment judgements
1.1 Applying algebraic skills to logarithms and exponentials	 The sub-skills in the Assessment Standard are: simplifying an expression, using the laws of logarithms and exponents solving logarithmic and exponential equations, using the laws of logarithms and exponents
1.2 Applying trigonometric skills to manipulating expressions	The sub-skills in the Assessment Standard are: • applying the addition or double angle formulae • applying trigonometric identities • converting $a\cos x + b\sin x$ to $k\cos(x\pm\alpha)$ or $k\sin(x\pm\alpha)$, α in 1st quadrant $k>0$
1.3 Applying algebraic and trigonometric skills to functions	The sub-skills in the Assessment Standard are: identifying and sketching related algebraic functions identifying and sketching related trigonometric functions determining composite and inverse functions — including basic knowledge of domain and range
1.4 Applying geometric skills to vectors	The sub-skills in the Assessment Standards are: ◆ determining the resultant of vector pathways in three dimensions ◆ working with collinearity ◆ determining the coordinates of an internal division point of a line ◆ evaluating a scalar product given suitable information and determining the angle between two vectors
2.1 Interpreting a situation where mathematics can be used and identifying a valid strategy	Assessment Standard 2.1 and 2.1 are transferable across Units and can be attached to any of the sub-skills listed above. #2.1 is mostly about choosing an appropriate strategy. This skill is usually required to make a good start on a problem.
2.2 Explaining a solution and, where appropriate, relating it to context	#2.2 is about how well you answer a question, often with a summary statement at the end of a question.

My assessment record: Mathematics: Expressions and Functions (Higher)

Keep this up to date as you go along so that you know if you have any areas that you need to do more work on

Assessment standard	First attempt		Second attempt (if required)	
	Mark(s)	Pass/Fail	Mark(s)	Pass/Fail
1.1 Applying algebraic skills to				
logarithms and exponentials				
simplifying an expression, using the				
laws of logarithms and exponents				
solving logarithmic and exponential				
equations, using the laws of logarithms and exponents				
1.2 Applying trigonometric skills to				
manipulating expressions				
applying the addition or double				
angle formulae				
applying trigonometric identities				
• converting $a\cos x + b\sin x$ to				
$k\cos(x\pm\alpha)$ or $k\sin(x\pm\alpha)$, α				
in 1 st quadrant $k > 0$				
1.3 Applying algebraic and trigonometric				
skills to functions				
identifying and sketching related				
algebraic functions				
identifying and sketching related				
trigonometric functions				
determining composite and inverse				
functions — including basic				
knowledge of domain and range 1.4 Applying geometric skills to vectors				
determining the resultant of vector				
pathways in three dimensions				
working with collinearity				
 determining the coordinates of an 				
internal division point of a line				
evaluating a scalar product given				
suitable information and				
determining the angle between two				
vectors				
2.1 Interpreting a situation where mathematics can be used and identifying a valid strategy				
2.2 Explaining a solution and, where appropriate, relating it to context				

Assessment standard: 1.1 Applying algebraic skills to logarithms and exponentials

Sub-skills	 simplifying an expression, using the laws of logarithms and exponents
	 solving logarithmic and exponential equations, using the laws of logarithms and
	exponents

Practice test 1

- 1 (a) Simplify $\log_5 6a + \log_5 7b$.
 - (b) Express $\log_b x^7 \log_b x^4$ in the form $k \log_b x$ [3]
- 2 Solve. $\log_4(x-1) = 3$

[2]

Practice test 2

- 1 (a) Simplify $\log_4 3p \log_4 2q$.
 - (b) Express $\log_a x^2 + \log_a x^3$ in the form $k \log_a x$ [3]
- Explain why x = 0.399 is a solution of the following equation to 3 significant figures: $e^{5x+1} = 20$ [2 + #2.2]

Practice test 3

- 1 Factorise the cubic $x^3 + 3x^2 10x 24$ fully. [#2.1 + 5]
- 2 (a) Simplify $\log_5 4x + \log_5 6y$. [1]
 - (b) Express $\log_a x^7 \log_a x^4$ in the form $k \log_a x$.

Assessment standard: 1.1 Applying algebraic skills to logarithms and exponentials

Answers to Practice Tests

Practice test 1

1 (a)
$$\log_5(6a \times 7b) = \log_5(42ab)$$

$$\log_b \left(\frac{x^7}{x^4} \right) = \log_b \left(x^3 \right)$$

$$3\log_b x$$

2
$$x-1=3^4$$
 stated explicitly $x=82$

Practice test 2

1

$$\log_4 3p - \log_4 2q$$

$$\log_4 3p - \log_4 2q \qquad \log_a x^2 + \log_a x^3$$

$$= \log_4 \left(\frac{3p}{2q}\right) \qquad \text{(b)} \qquad \log_a \left(x^5\right)$$

$$5 \log_a x$$

$$\log_a x^2 + \log_a x^3$$

$$\log_a(x)$$
 $5\log_a x$

$$e^{5x+1} = 20$$

$$\ln(e^{5x+1}) = \ln(20)$$

$$5x + 1 = \ln(20)$$

$$x = \frac{\ln(20) - 1}{5} = 0.399$$

$$e^{5x+1} = 20$$

$$\log_e(20) = 5x + 1$$

$$x = \frac{\ln(20) - 1}{5} = 0.399$$

- $e^{5x+1} = 20$ OR $\log_e(20) = 5x+1$ $x = \frac{\ln(20)-1}{5} = 0.399$ Apply logs to both sides OR convert from exponential to logarithmic form

 Rearrange equation for x

Practice test 3

strategy to start process of factorisation for cubic, eg synthetic division or other method 1 (x-2)(x+3)(x+5)

$$\log_4(3p \times 5q) = \log_4 15pq$$

(b)
$$5\log_a x - 3\log_a x \text{ OR } \log_a x^2$$

 $2\log_a x$

Assessment standard: 1.2 Applying trigonometric skills to manipulating expressions

Sub-skills	 applying the addition or double angle formulae applying trigonometric identities
	• converting $a\cos x + b\sin x$ to $k\cos(x\pm\alpha)$ or $k\sin(x\pm\alpha)$, α in 1 st quadrant $k>0$

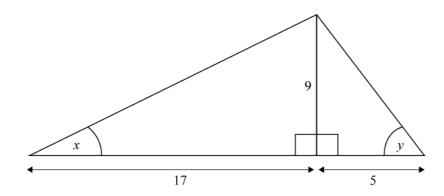
Practice test 1

Express 2 sin x + 3cosx in the form $k \sin(x+a)^{\circ}$ where k>0 and $0 \le a < 360$. Calculate the values of k and a.

[4]

The diagram below shows two right-angled triangles with measurements as shown. Find the exact value of sin (x-y).

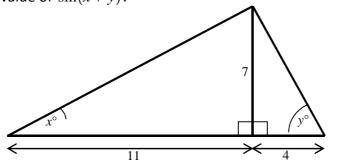
[3]



3 Snow that $(3 + 2 \cos x) (3 - 2 \cos x) = 4 \sin^2 x + 5$.

[#2.1, 2]

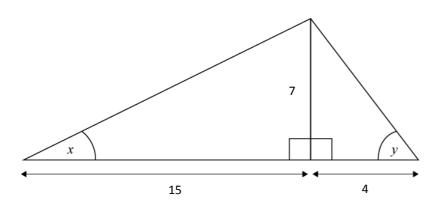
- Express $4\cos x 5\sin x$ in the form $k\cos(x+a)^{\circ}$ where k>0 and $0 \le a < 360$.
- The diagram below shows two right-angled triangles. Find the exact value of sin(x + y).



3 Show that $(2+5\sin x)(2-5\sin x) = 25\cos^2 x - 21$. (3 + 2.1)

Practice test 3

- Express 5sinx + 4cosx in the form $ksin(x+a)^0$ where k>0 and $0^o \le a^o \le 360^o$. [4]
- The diagram below shows two right-angled triangles. Find the exact value of cos(x + y).



3 Show that $(3 + 2 \cos x)(3 - 2 \cos x) = 5 + 4 \sin^2 x$. [#2.1 + 3]

(4)

[4]

Assessment standard: 1.2 Applying trigonometric skills to manipulating expressions

Answers to Practice tests

Practice test 1

- 1 $k = \sqrt{41}$ and a = 51.3°
- $\frac{136}{\sqrt{18521}}$
- 3 know to use identities

L.H.S. =
$$1-9\sin^2 x$$

= $1-9(1-\cos^2 x)$
= $1-9+9\cos^2 x$
= $9\cos^2 x - 8$
= RHS

Practice test 2

- 1 $k = \sqrt{41}$ and a = 51.3°
- $\frac{105}{\sqrt{11050}}$
- 3 know to use identities

L.H.S. =
$$4 - 25\sin^2 x$$

= $4 - 25(1 - \cos^2 x)$
= $4 - 25 + 25\cos^2 x$
= $25\cos^2 x - 21$
= RHS

Practice test 3

1
$$k = \sqrt{13}$$
 and a = 33.7°

2
$$\frac{2}{\sqrt{9805}}$$
 or $\frac{4}{\sqrt{39220}}$ or $\frac{2\sqrt{9805}}{9805}$

3 know to use identities

L.H.S. =
$$4-9\cos^2 x$$

= $4-9(1-\sin^2 x)$
 $4-9+9\sin^2 x = -5+9\sin^2 x$
= R.H.S.

Assessment standard: 1.3 Applying algebraic and trigonometric skills to functions

Practice test 1

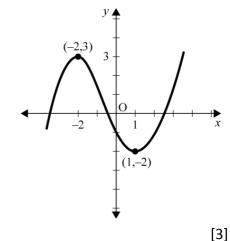
Sketch the graph of $a\cos(x-\frac{\pi}{3})$ for $0 \le x \le 2\pi$ and a > 0. Show clearly the intercepts on the *x*-axis and the coordinates of the turning points.

[4]

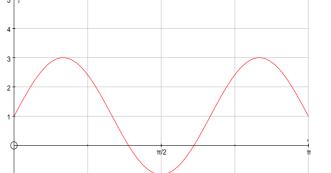
The diagram shows the graph of y = f(x) with a maximum turning point at (-2, 3) and a minimum turning point at (1, -2).

[4

Sketch the graph of y = f(x+2)-1



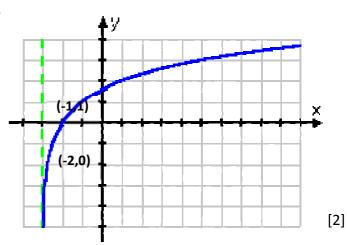
The diagram below shows the graph of $y = a \sin(bx) + c$.



Write down the values of *a*, *b* and *c*.

[3]

4 The diagram shows the graph of $y = \log_b(x-a)$.



Determine the values of *a* and *b*.

- The functions f and g, defined on suitable domains contained within the set of real numbers, f(x) = 5x 2, $g(x) = \sqrt{x 1}$. A third function h(x) is defined as h(x) = g(f(x)).
 - (a) Find an expression for h(x).

[2]

(b) Explain why x = 0 is not in the domain of h(x).

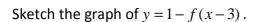
[#2.2]

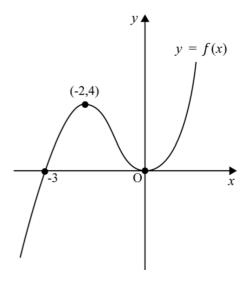
A function is given by f(x) = 4x + 6. Find the inverse function $f^{-1}(x)$.

[3]

Practice test 2

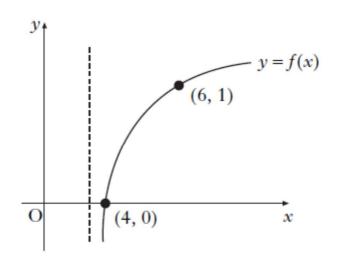
The diagram shows the graph of y = f(x) with a maximum turning point at (-2, 4) and a minimum turning point at (0, 0).





[4]

The diagram shows the graph of $y = \log_b(x-a)$



Determine the values of a and b.

[2]

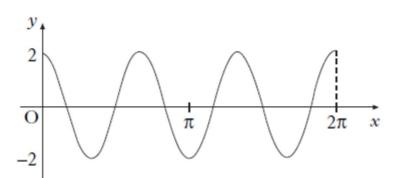
3 Sketch the graph of $y = 3\cos(x + \frac{\pi}{4})$ for $0 \le x \le 2\pi$.

Show clearly the intercepts on the x-axis and the coordinates of the turning points.

[4]

4 The diagram shows the graph of $y = a\cos(bx)$ for $0 \le x \le 2\pi$.

State the values of *a* and *b*.



[2]

The functions f and g are defined on suitable domains contained within the set of real numbers, $f(x) = \frac{1}{x^2 - 16}$ and g(x) = x - 2.

A third function, h, is defined as h(x) = f(g(x)).

(a) Find an expression for h(x).

[2]

(b) Find a suitable domain for h(x).

[#2.1 + 2]

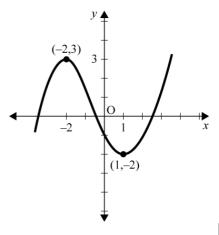
A function is given by $f(x) = 2 - \sqrt[3]{x}$. Find the inverse function $f^{-1}(x)$.

[3]

Sketch the graph of $y = a \sin(x - \frac{\pi}{6})$ for $0 \le x \le 2\pi$ and a > 0, clearly showing the maximum and minimum values and where it cuts the *x*-axis.

[3]

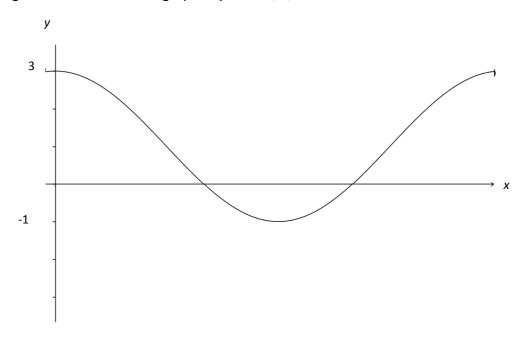
The diagram shows the graph of y = f(x) with a maximum turning point at (-2, 3) and a minimum turning point at (1, -2).



Sketch the graph of y = f(x-1)-2.

[3]

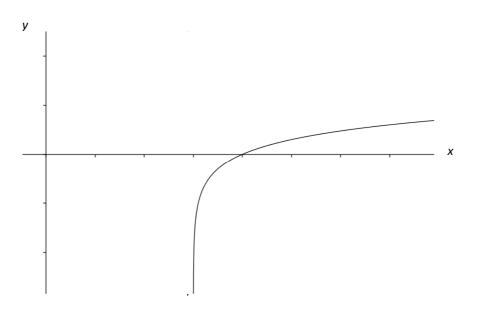
The diagram below shows the graph of $y = a\cos(bx) + c$.



Write down the values of a, b and c.

[3]

4 The diagram shows the graph of $y = \log_b(x-a)$.



Determine the values of a and b.

[2]

- The functions f and g, defined on suitable domains, are given by f(x) = 2x 3, $g(x) = \sqrt{x}$. A third function h(x) is defined as h(x) = g(f(x)).
 - (a) Find an expression for h(x).

[3]

(b) Explain why the largest domain for h(x) is given by $x \ge \frac{3}{2}$.

[#2.2]

A function is given by f(x) = 3x + 4. Find the inverse function $f^{-1}(x)$.

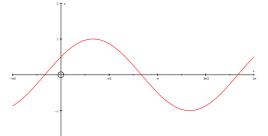
[2]

Assessment standard: 1.3 Applying algebraic and trigonometric skills to functions

Answers to Practice Tests

Practice test 1

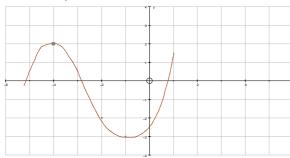
1



x-intercepts: $\left(\frac{5\pi}{6},0\right)$ and $\left(\frac{11\pi}{6},0\right)$

Max = a
$$\left(\frac{\pi}{3}, a\right)$$
 Min = -a $\left(\frac{4\pi}{3}, a\right)$

2



(-4,2), (-1,-3) and (-2,-2) clearly annotated

3
$$a = 2, b = 3, c = 1$$

4
$$a = -3, b = 2$$

5 (a)
$$h(x) = \sqrt{5x-3}$$

$$5x-3 \ge 0$$
 Because on the set of real numbers, the square root of a negative number cannot be found.
$$x \ge \frac{3}{5}$$

6
$$f^{-1}(x) = \frac{1}{4}(x-6)$$

Practice test 2

- Horizontal translation (3 units to the right)
 - Reflection in the *x*-axis
 - Vertical translation (1 unit up)
 - Each image annotated clearly: (-3, 0) to (0, 1)
 (-2, 4) to (1, -1)
 (0, 0) to (3, 1)

$$a = 3, b = 3$$

- Amplitude correct: Max value = 3, Min value = -3
 - Correct turning points: Min. T.P. $\left(\frac{3\pi}{4}, -3\right)$ Max T.P. $\left(\frac{7\pi}{4}, 3\right)$
 - Correct x-intercepts $\left(\frac{\pi}{4}, 0\right) \left(\frac{5\pi}{4}, 0\right)$
 - Correct shape, i.e. cosine curve

Note: y-intercept =
$$\frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2} = 2 \cdot 121...$$

4
$$a = 2, b = 3$$

5 (a)
$$h(x) = \frac{1}{(x-2)^2 - 16}$$

(b)
$$(x-2)^2 - 16 = 0$$

$$(x-2)^2 = 16$$

$$x-2 = \pm 4$$

$$x = -2, 6 \qquad \text{domain} = \{x \in R : x \neq -2, x \neq 6\}$$

6
$$f^{-1}(x) = (2-x)^3$$

1 max a at $(\frac{2\pi}{3}, a)$ and min -a at $(\frac{5\pi}{3}, -a)$

x-intercepts
$$(\frac{\pi}{6}, 0)$$
 and $(\frac{7\pi}{6}, 0)$

correct shape, i.e. sine wave

2 Correct horizontal translation (1 units to the right)
Correct vertical translation (2 units down)

3
$$a = 3, b = 2, c = 1$$

4
$$a = 3, b = 3$$

- 5 (a) $g(f(x)) = \sqrt{2x-3}$
 - (b) Because on the set of real numbers, the square root of a negative number cannot be found.

Therefore domain:
$$2x - 3 \ge 0$$

$$2x \ge 3$$

$$x \ge \frac{3}{2}$$

$$6 f^{-1}(x) = \frac{x-4}{3}$$

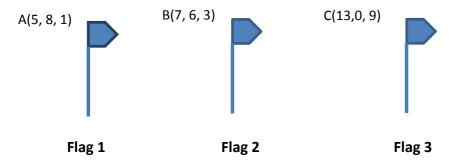
Assessment standard: 1.4 Applying geometric skills to vectors

Sub-skills	 determining the resultant of vector pathways in three dimensions working with collinearity determining the coordinates of an internal division point of a line evaluating a scalar product given suitable information and determining the
	angle between two vectors

Practice test 1

- An engineer positioning marker flags needs to ensure that the following two conditions are met:
 - ♦ The poles are in a straight line.
 - ♦ The distance between flag 2 and flag 3 is three times the distance between flag 1 and flag 2.

Relative to suitable axes, the top of each flag can be represented by the points A (2, 3, 1), B (5, 1, 3), and C (11,-3, 7) respectively. All three poles are vertical.



Has the engineer satisfied the two conditions?

You must justify your answer.

#2.1 #2.2 [4]

The points R, S and T lie in a straight line, as shown. S divides RT in the ratio 3:4.

Find the coordinates of S.

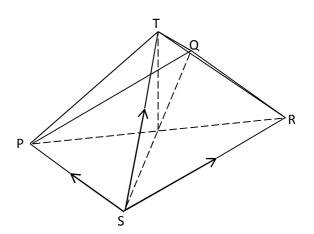
[3]

3 TPQRS is a pyramid with rectangular base PQRS.

The vectors $\underset{SP}{\rightarrow}$ and $\underset{ST}{\rightarrow}$ are given by:

$$_{\overrightarrow{SP}} = \begin{pmatrix} -2\\10\\-6 \end{pmatrix}; \quad \underset{ST}{\rightarrow} = \begin{pmatrix} 4\\16\\12 \end{pmatrix}$$

Express \overrightarrow{PR} in component form.

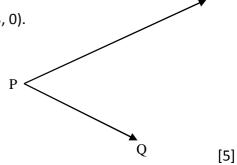


[2]

4 The diagram shows vectors \overrightarrow{PR} and \overrightarrow{PQ} .

P, Q and R have coordinates P(4, -1, -2), Q(6, -2, 2) and R(8, -3, 0).

Find the size of the acute angle QPR.



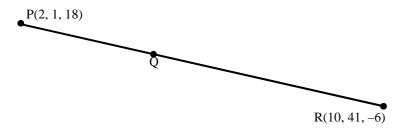
Practice test 2

- 1 An engineer positioning concrete posts needs to ensure that the following two conditions are met:
 - ♦ The poles are in a straight line.
 - ullet The distance between post 1 and post 2 is twice the distance between post 2 and post 3 Relative to a suitable axes, the posts can be represented by the points A(0, 3, 10), B(1, 1, 9) and C(3, -3, 7) respectively.

Has the engineer satisfied the two conditions? You must justify your answer.

[4 +#2.1 + #2.2]

2 The points P, Q and R lie in a straight line, as shown. Q divides PR in the ratio 3:5.



Find the coordinates of Q.

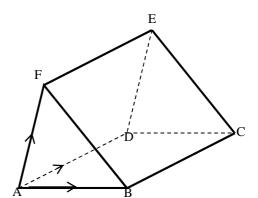
[3]

3 ABCDEF is a triangular prism as shown.

The vectors \overrightarrow{AB} , \overrightarrow{AD} and \overrightarrow{AF} are given by:

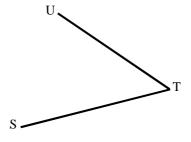
$$\underset{AB}{\rightarrow} = \begin{pmatrix} -4 \\ 8 \\ 4 \end{pmatrix}; \quad \underset{AD}{\rightarrow} = \begin{pmatrix} 10 \\ 4 \\ 2 \end{pmatrix}; \quad \underset{AF}{\rightarrow} = \begin{pmatrix} -1 \\ -4 \\ 13 \end{pmatrix}$$

Express \overrightarrow{FB} in component form.



[3]

4 Points S, T and U have coordinates S(3, 0, 2), T(7, 1, -5) and U(4, 3, -2).



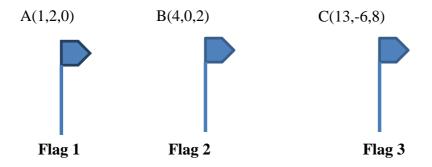
Find the size of the acute angle STU.

[5 + #2.1]

Practice test 3

- 1 An engineer laying flags needs to check that:
 - they are in a straight line;
 - the distance between Flag 2 and Flag 3 is 3 times the distance between Flag 1 and Flag 2.

Relative to suitable axes, the top-left corner of each flag can be represented by the points A (1, 2, 0), B (4, 0, 2), and C (13, -6, 8) respectively. All three flags point vertically upwards.



Has the engineer laid the flags correctly? You must justify your answer.

[#2.1, #2.2, 4]

The points R, S and T lie in a straight line, as shown. S divides RT in the ratio 3:5. Find the coordinates of S.

[3]

3 TPQRS is a pyramid with rectangular base PQRS.

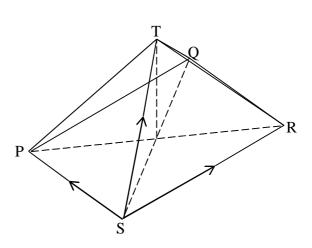
The vectors $\overrightarrow{SP}, \overrightarrow{SR}, \overrightarrow{ST}$ are given by:

$$\overrightarrow{SP} = -3\mathbf{i} + 4\mathbf{j} - \mathbf{k}$$

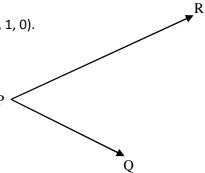
$$\overrightarrow{SR} = 12\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$$

$$\overrightarrow{ST} = \mathbf{i} + 7\mathbf{j} + 7\mathbf{k}$$

Express \overrightarrow{PT} in component form.



4 Points P, Q and R have coordinates P(5, -3, -1), Q(7, -4, 2) and R(8, 1, 0).



Find the size of the acute angle QPR.

[5]

Unit title: Expressions and Functions

Assessment standard: 1.4 Applying geometric skills to vectors

Answers to Practice Tests

Practice test 1

1
$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}$$
 and $\overrightarrow{BC} = \begin{pmatrix} 6 \\ -6 \\ 6 \end{pmatrix} = 3\overrightarrow{AB}$ therefore $BC: AB = 1:3$

BC=3AB hence vectors are parallel and B is a common point so A, B and C are collinear.

Yes, the engineer has placed the flags correctly because A, B and C lie on the same straight line and BC: AB = 1:3 so the distance between flags 2 and 3 is 3 times bigger that the distance between flags 1 and 2.

$$S = (2,-8,3)$$

3
$$PR = 20i + 16j + 8k \text{ or } \begin{pmatrix} 20 \\ -16 \\ 8 \end{pmatrix}$$

4
$$\angle QPR = 36.7^{\circ}$$
 (or 0.64 radians)

Practice test 2

1
$$\overrightarrow{AB} = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$$
 and $\overrightarrow{BC} = \begin{pmatrix} 2 \\ -4 \\ -2 \end{pmatrix} = 2\overrightarrow{AB}$ therefore $BC: AB = 1: 2$

 $\overrightarrow{BC} = 3\overrightarrow{AB}$ hence the vectors are parallel. B is a common point so the A, B and C are collinear.

The posts have **not** been laid out correctly because although the posts lie in a straight line the distance between post 1 and post 2 is one half of the distance between posts 2 and 3.

$$3 \qquad -3\mathbf{i} + 12\mathbf{j} - 9\mathbf{k} \text{ OR } \begin{pmatrix} -3\\12\\-9 \end{pmatrix}$$

4
$$\angle$$
STU = 35·6° or 0·62 (radians)

Practice test 3

1
$$\overrightarrow{AB} = \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix}$$
 and $\overrightarrow{BC} = \begin{pmatrix} 9 \\ -6 \\ 6 \end{pmatrix} = 3\overrightarrow{AB}$ therefore $\overrightarrow{BC} = 3\overrightarrow{AB}$ or $\overrightarrow{AB} = \frac{1}{3}\overrightarrow{BC}$

 $\overrightarrow{BC}=3\overrightarrow{AB}$ hence the vectors are parallel. B is a common point so the A, B and C are collinear.

The posts have not been laid out correctly because although they lie in a straight line the distance between post 1 and post 2 is one third of the distance between posts 2 and 3.

- 2 S (5, -1, 9)
- 3 $4\mathbf{i} + 3\mathbf{j} + 8\mathbf{k} \text{ OR } \begin{pmatrix} 4\\3\\8 \end{pmatrix}$
- 4 $\angle QPR = 74.8^{\circ} \text{ or } 1.306 \text{ (radians)}$

Assessment Standards	Making assessment judgements
1.1 Applying algebraic skills to solve	The sub-skills in the Assessment Standard are:
equations	 factorising a cubic polynomial expression with unitary x³ coefficient solving cubic polynomial equations with unitary x³ coefficient given the nature of the roots of an equation, use the discriminant to find an unknown
1.2 Applying trigonometric skills to	The sub-skills in the Assessment Standard are:
solve equations	 solve trigonometric equations in degrees and radian measure, involving trigonometric formulae, in a given interval
1.3 Applying calculus skills of	The sub-skills in the Assessment Standard are:
differentiation	 ◆ differentiating an algebraic function which is, or can be simplified to, an expression in powers of x ◆ differentiating k sin x, k cos x ◆ determining the equation of a tangent to a curve at a given point by differentiation
1.4 Applying calculus skills of	The sub-skills in the Assessment Standard are:
integration	 integrating an algebraic function which is, or can be, simplified to an expression of powers of x integrating functions of the form f(x) = (x+q)ⁿ, n ≠ -1 integrating functions of the form f(x) = p cos x and f(x) = p sin x calculating definite integrals of polynomial functions with integer limits
2.1 Interpreting a situation where	Assessment Standard 2.1 and 2.1 are transferable across Units and can
mathematics can be used and identifying a valid strategy	be attached to any of the sub-skills listed above. #2.1 is mostly about choosing an appropriate strategy. This skill is usually required to make a good start on a problem.
2.2 Explaining a solution and, where appropriate, relating it to context	#2.2 is about how well you answer a question, often with a summary statement at the end of a question.

My assessment record: Mathematics: Expressions and Functions (Higher)

Keep this up to date as you go along so that you know if you have any areas that you need to do more work on

Assessment standard	First attempt		Second attempt (if required)	
	Mark(s)	Pass/Fail	Mark(s)	Pass/Fail
 1.1 Applying algebraic skills to solve equations factorising a cubic polynomial expression with unitary x³ coefficient solving cubic polynomial equations with unitary x³ coefficient given the nature of the roots of an equation, use the discriminant to find an unknown 1.2 Applying trigonometric skills to 				
 solve equations solve trigonometric equations in degrees and radian measure, involving trigonometric formulae, in a given interval 1.3 Applying calculus skills of 				
 differentiation differentiating an algebraic function which is, or can be simplified to, an expression in powers of x differentiating k sin x, k cos x determining the equation of a tangent to a curve at a given point by differentiation 				
 1.4 Applying calculus skills of integration integrating an algebraic function which is, or can be, simplified to an expression of powers of x integrating functions of the form f(x) = (x+q)ⁿ, n ≠ -1 integrating functions of the form f(x) = p cos x, f(x) = p sin x calculating definite integrals of polynomial functions with integer limits 	3 out of 4 subskills to be mastered			
2.1 Interpreting a situation where mathematics can be used and identifying a valid strategy 2.2 Explaining a solution and, where				
appropriate, relating it to context				

Assessment standard: 1.1 Applying algebraic skills to solve equations

Sub-skills factorising a cubic polynomial expression with unitary x³ coefficient solving cubic polynomial equations with unitary x³ coefficient given the nature of the roots of an equation, use the discriminant to find an unknown

Practice test 1

- A function f is defined by $f(x) = x^3 + 2x^2 5x 6$ where x is a real number.
 - (a) (i) Show that (x+1) is a factor of f(x).
 - (ii) Hence factorise f(x) fully.

[4]

(b) Solve f(x) = 0.

[1]

- 2 Solve the cubic equation f(x) = 0 given the following:
 - when f(x) is divided by (x-3), the remainder is zero
 - when the graph of y = f(x) passes through the point (-2,0)
 - (x-4) is a factor of f(x)

[#2.2]

3 The graph of the function $f(x) = kx^2 - 8x + 4$ does not touch or cross the *x*-axis. What is the range of values for k?

[#2.1, 1]

Practice test 2

- Solve the cubic equation f(x) = 0 given the following:
 - when f(x) is divided by x+2, the remainder is zero
 - when the graph of y = f(x) is drawn, it passes through the point (-4,0)
 - (x-1) is a factor of f(x).

[#2·2]

Solve the equation $x^3 - 4x^2 + x + 6 = 0$

[#2.1+5]

Assessment standard: 1.1 Applying algebraic skills to solve equations

Answers to Practice Tests

Practice test 1

- 1 (a) (i) f(-1) = 0 so (x + 1) is a factor Either synthetic division or substitution may be used to show that
 - (ii) (x-2)(x+3)(x+1)
 - (b) x = -3, x = -1, x = 2
- 2 x = 3, x = 4, x = -2
- 3 k>4

Practice test 2

- 1 x = -4, x = -2, x = 1
- 2 x = -1, x = 2, x = 3

Assessment standard: 1.2 Applying trigonometric skills to solve equations

Sub-skills	solve trigonometric equations in degrees and radian measure, involving
	trigonometric formulae, in a given interval

Practice test 1

1 Solve $\sqrt{2}\cos 2x^{\circ} = 1$, for $0^{\circ} \le x^{\circ} \le 180^{\circ}$.

[3]

2 Solve $4\sin 2t^{\circ} - \cos t^{\circ} = 0$, for $0^{\circ} \le t^{\circ} \le 180^{\circ}$

[4]

3 Given that $5\sin x^{\circ} + 3\cos x^{\circ} = \sqrt{34}\cos(x - 49)^{\circ}$, solve $5\sin x^{\circ} + 3\cos x^{\circ} = 3 \cdot 6$, for 0 < x < 90.

[#2.1+3]

Practice test 2

1 Solve $2\cos 2x = \sqrt{3}$, for $0^{\circ} \le x \le 180^{\circ}$.

[3]

2 Solve $2\sin 2w - \cos w = 0$ for $0^{\circ} \le t \le 180^{\circ}$.

[4]

3 Given $3\sin x + 5\cos x = \sqrt{34}\cos(x - 31.0)^{\circ}$, solve $3\sin 2x + 5\cos 2x = 3.5$, for $0^{\circ} < x < 90^{\circ}$.

[#2.1+3]

Assessment standard: 1.2 Applying trigonometric skills to solve equations

Answers to Practice Tests

Practice test 1

- 1 $x = 22.5^{\circ}$ and 157.5°
- 2 $t = 7.2^{\circ}, 90^{\circ}, 172.8^{\circ}$
- 3 $x = 3.6^{\circ}, 55.5^{\circ}$

Practice test 2

- 1 $x = 15^{\circ}$ and 165°
- 2 $w = 14.5^{\circ}, 90^{\circ}, 165.5^{\circ}$
- 3 $x = 42.06^{\circ}$, $\frac{168.95^{\circ}}{168.95^{\circ}}$ (solution out of range)

Assessment standard: 1.3 Applying calculus skills of differentiation

Sub-skills

- differentiating an algebraic function which is, or can be simplified to, an expression in powers of x
- \bullet differentiating $k \sin x$, $k \cos x$
- determining the equation of a tangent to a curve at a given point by differentiation

Practice test 1

1 Find f'(x), given that $f(x) = 5\sqrt{x} - \frac{7}{x^3}$, x > 0.

[3]

A bowler throws a cricket ball vertically upwards. The height (in metres) of the ball above the ground, t seconds after it is thrown, can be represented by the formula $h(t) = 16t - 4t^2$.

The velocity, $v \text{ ms}^{-1}$, of the ball at time t is given by $v = \frac{dh}{dt}$.

Find the velocity of the cricket ball three seconds after it is thrown.

Explain what this means in the context of the question.

[#2.2 + 2]

3 Differentiate the function $f(x) = 6 \sin x$ with respect to x.

[1]

4 A curve has equation $y = 7x^2 + 5x - 3$.

Find the equation of the tangent to the curve at the point where x = 1.

[4]

Practice test 2

1 Find f'(x), given that $f(x) = x\sqrt[3]{x} + \frac{6}{\sqrt[4]{x^3}}, x > 0.$

[3]

2 Differentiate $-3\cos x$ With respect to x.

[1]

A particle moves in a horizontal line. The distance x (in metres) of the particle after t seconds can be represented by the formula $x = 4t^2 - 24t$.

The velocity of the particle at time t is given by $v = \frac{dx}{dt}$.

(a) Find the velocity of the particle after three seconds.

[2]

(b) Explain your answer in terms of the particle's movement.

[#2.2]

4 A curve has equation $y = 3x^2 + 2x - 5$.

Find the equation of the tangent to the curve at the point where x = -2.

[4]

Assessment standard: 1.3 Applying calculus skills of differentiation

Answers to Practice Tests

Practice test 1

1
$$f'(x) = \frac{5}{2}x^{-\frac{1}{2}} + \frac{35}{2}x^{-\frac{7}{2}} = \frac{5}{2\sqrt{x}} + \frac{35}{2\sqrt{x^7}}$$

$$v = \frac{dh}{dt} = 16 - 8t$$
 when t = 3, v = -8m/s

e.g. The cricket ball is has turned and is now falling downwards with an instantaneous speed of 8m/s.

$$3 \qquad \frac{d}{dx}(6\sin x) = 6\cos x$$

4
$$v = 19x - 169$$

Practice test 2

1
$$f'(x) = \frac{4}{3}x^{\frac{1}{3}} + \frac{9}{2}x^{-\frac{7}{4}} = \frac{4\sqrt[3]{x}}{3} + \frac{9}{2\sqrt[3]{x^7}}$$

$$2 \qquad \frac{d}{dx}(-3\cos x) = 3\sin x$$

3
$$v = \frac{dx}{dt} = 8t - 24$$
 when t = 3, v = 0m/s

e.g. The particle is instantaneously at rest.

4
$$y = -10x - 17$$

Assessment standard: 1.4 Applying calculus skills of integration

Sub-skills

- ◆ integrating an algebraic function which is, or can be, simplified to an expression of powers of x
- integrating functions of the form $f(x) = (x+q)^n$, $n \ne -1$
- integrating functions of the form $f(x) = p \cos x$ and $f(x) = p \sin x$
- calculating definite integrals of polynomial functions with integer limits

Practice test 1

1 Find
$$\int \left(4x^{\frac{1}{3}} + \frac{1}{x^3}\right) dx$$
, $x > 0$.

[4]

2
$$h'(x) = (x+5)^{-4}$$
 find $h(x)$, $x \neq -5$.

[2]

3 Find
$$\int 4\cos\theta \,d\theta$$
.

[1]

4 Find
$$\int_{-3}^{2} (x^2 - 8x + 16) dx$$
.

[3]

Practice test 2

1 Find
$$\int (2x^{\frac{1}{3}} + \frac{1}{x^4}) dx$$
, $x \neq 0$.

[4]

2
$$h'(x) = (x-3)^{-2}$$
, find $h(x)$, $x \neq 3$.

[2]

3 Find
$$\int 2\sin\theta \, d\theta$$
...

[1]

4 Find
$$\int_{-3}^{1} (x+2)^3 dx$$
.

[3]

Assessment standard: 1.4 Applying calculus skills of integration

Answers to Practice Tests

Practice test 1

$$1 3x^{\frac{4}{3}} - \frac{1}{2x^2} + c$$

2
$$h(x) = -\frac{1}{3}(x+5)^{-3} + C$$

$$4\sin\theta + C$$

4
$$\frac{335}{3}$$
 or $111\frac{2}{3}$

Practice test 2

$$1 \qquad \frac{3}{2}x^{\frac{4}{3}} - \frac{1}{3}x^{-3} + c$$

2
$$h(x) = -(x-3)^{-1} + c$$

$$3 -2\cos\theta + c$$

BANCHORY ACADEMY REVISION GUIDES

Block 1 Test

- 1 Straight Line Equations and Graphs (APP 1.1) Page 5
- 2 Sequences (APP 1.3) Page 12

You will find more basic questions as well as extended questions to practise from your Higher Maths textbook Chapters 1 and 5. The "Mixed Question" exercises at the end of each chapter are recommended revision for **extension tests**.

Block 2 Test

3	Functions and Graphs of Functions (E&F 1.3)	Page 26
4	Trigonometry - Radian measure and solving equations (R&C 1.2)	Page 45
5	Differentiation (R&C 1.3 note – chain rule to be covered later)	Page 47
You wi	Il find more basic questions as well as extended questions to practise from your Higher	Maths

You will find more basic questions as well as extended questions to practise from your Higher Maths textbook Chapters 2, 3, 4 and 6. Note that from Chapter 6 we will only have covered some of the exercises. The "Mixed Question" exercises at the end of each chapter are recommended revision for extension tests.

Block 3 Test

6	Trigonometry - Addition formulae and Wave Function (E&F 1.2)	Page 23
7	Quadratic and Polynomial Functions (R&C 1.1)	Page 43
8	Integration (R&C 1.4 note – reverse of chain rule to be covered later)	Page 49
	Note: page 49 omit Practice test 1 question 2, Practice Test 2 questions 2 and 4	
9	The Circle (App 1.2)	Page 9

You will find more basic questions as well as extended questions to practise from your Higher Maths textbook Chapters 11, 16, 7, 8, 9 and 12. Note that from Chapter 9 we will only have covered some of the exercises. The "Mixed Question" exercises at the end of each chapter are recommended revision for extension tests.

Block 4 Test

10	Exponential and Logarithmic Functions (E&F 1.1)	Page 21
11	Further Calculus - Chain Rule and applications (R&C 1.3, 1.4 and App 1.4)	Page 49
	Note: page 49 only do Practice test 1 question 2, Practice Test 2 questions 2 and 4	Page 15
12	Vectors (E&F 1.4)	Page 34

You will find more basic questions as well as extended questions to practise from your Higher Maths textbook Chapters 15, 6, 9, 14 and 13. Note that from Chapter 6 and 9 some of the exercises were covered earlier in the Blocks 2 and 3. The "Mixed Question" exercises at the end of each chapter are recommended revision for **extension tests**.