St Peter the Apostle High

Mathematics Dept.

Higher Prelim Revision 2

Paper I - Non~calculator

Time allowed - 1 hour 10 minutes

FORMULAE LIST

Circle:

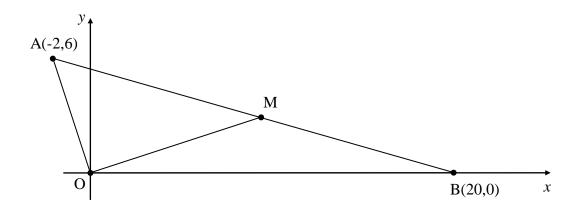
The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

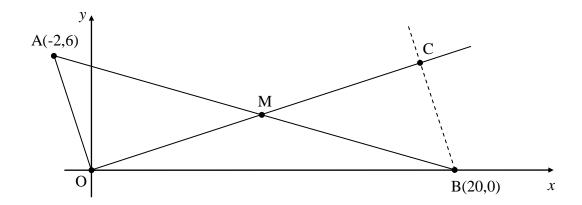
Trigonometric formulae:	$\sin(A\pm B) = \sin A\cos B \pm \cos A\sin B$
	$\cos(A\pm B) = \cos A \cos B \mp \sin A \sin B$
	$\sin 2A = 2\sin A\cos A$
	$\cos 2A = \cos^2 A - \sin^2 A$
	$= 2\cos^2 A - 1$
	$= 1 - 2\sin^2 A$

All questions should be attempted

1. The diagram shows triangle OAB with M being the mid-point of AB. The coordinates of A and B are (-2,6) and (20,0) respectively.



- (a) Establish the coordinates of M.
- (b) Hence find the equation of the median OM.
- (c) A line through B, perpendicular to OM meets OM produced at C.



- (i) Find the equation of the line BC and hence establish the coordinates of C. 4
- (ii) What can you say about triangles OAM and BMC? Explain your answer.

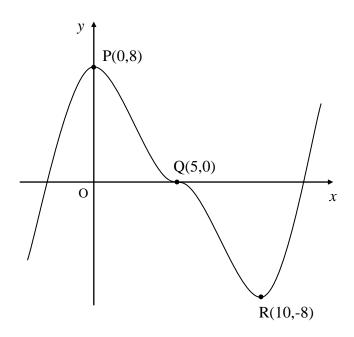
2. A curve has as its equation
$$y = \frac{x^2 - 4x}{\sqrt{x}}$$
, where $x \in R$ and $x > 0$.

Find the gradient of the tangent to this curve at the point where x = 4.

6

2

1



The function has stationary points at P(0,8), Q(5,0) and R(10,-8) as shown. Sketch a possible graph for y = f'(x), where f'(x) is the derivative of f(x).

4. Two functions, defined on suitable domains, are given as

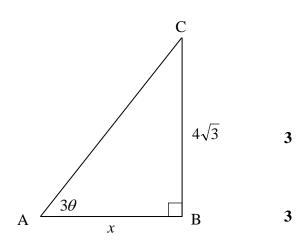
 $g(x) = x^2 - 3x$ and h(x) = 2x + 1.

Show that the composite function g(h(x)) can be written in the form a(ax+b)(x-b), where *a* and *b* are constants, and state the value(s) of *a* and *b*. **4**

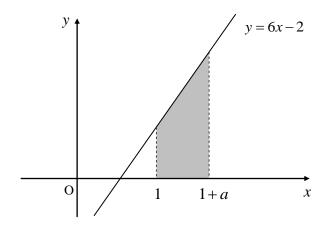
5. Consider the triangle opposite.

AB is *x* units long, BC = $4\sqrt{3}$ units long and angle BAC = 3θ radians.

- (a) Given that the exact area of the triangle is $8\sqrt{3}$ units², show clearly that x = 4.
- (b) Hence find the value of θ , in radians, given that 3θ is acute.



6. The diagram below, which is not to scale, shows part of the graph of the line with equation y = 6x - 2. Also shown are ordinates at x = 1 and at x = 1 + a.



Find *a* given that the shaded part of the diagram has an area of 4 square units.

7. Two sequences are defined by the following recurrence relationships

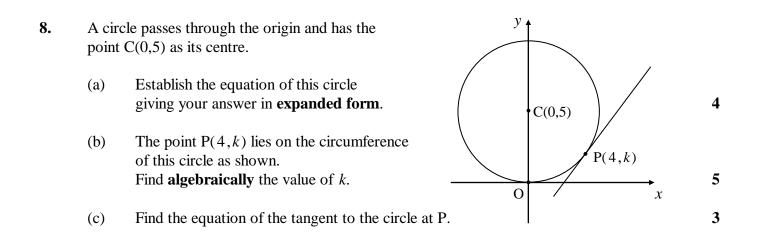
 $U_{n+1} = 0.6U_n + 20$ and $U_{n+1} = 0.9U_n + b$, where b is a constant.

(a) Explain why both sequences have a limit as $n \to \infty$. 1

7

4

(b) Find the value of b if both these sequences have the same limit.



9. A curve has as its equation $y = (p+1)x^3 - 3px^2 + 4x + 1$, where p is a positive integer.

(a) Find
$$\frac{dy}{dx}$$
. 2

(b) Hence establish the value of p given that this curve has only **one stationary point**. **5**

St Peter the Apostle High

Mathematics Dept.

Higher Prelim Revision 2

Paper 2 - Calculator

Time allowed - 1 hour 30 minutes

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:	$\sin(A\pm B) = \sin A\cos B \pm \cos A\sin B$
	$\cos(A\pm B) = \cos A \cos B \mp \sin A \sin B$
	$\sin 2A = 2\sin A\cos A$
	$\cos 2A = \cos^2 A - \sin^2 A$
	$= 2\cos^2 A - 1$
	$= 1 - 2\sin^2 A$

All questions should be attempted

- The diagram shows a line joining the points A(-3,-1) and D(6,5). B has coordinates (9,-1) and C is a point on AD.
 - (a) Find the equation of the line AD.
 - (b) Hence establish the coordinates of C given that triangle ABC is isosceles.
 - (c) Use gradient theory to calculate the size of angle BCD, giving your answer correct to the nearest degree.

(a)

2. A lead shot is discharged from a gun at a clay pigeon.The height, *h* feet, of the shot after *t* seconds is given by

The height, h feet, of the shot after t seconds is given by the function

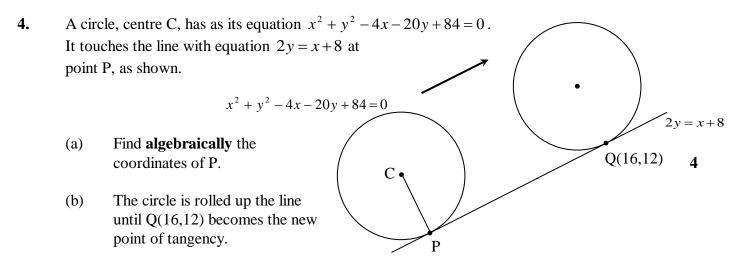
$$h(t) = 288t - 48t^2$$

- What is the maximum height the shot can reach?
- (b) For the shot to actually break the clay pigeon it must strike the pigeon at a speed greater than <u>or</u> equal to 48 feet per second.

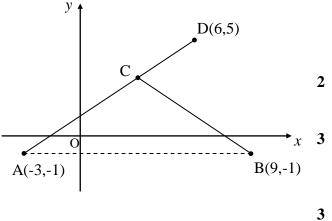
The speed, *s* , of the shot after *t* seconds can be found from s = h'(t), where $0 < t \le 3$.

Will the shot break the clay pigeon after a flight of 2.7 seconds ? Explain.

- (c) Calculate the maximum **height** the shot can reach **and** still break the clay pigeon. **3**
- 3. Solve algebraically the equation $9\sin x^\circ + 4 = 2\cos 2x^\circ$ where $0 \le x < 360$



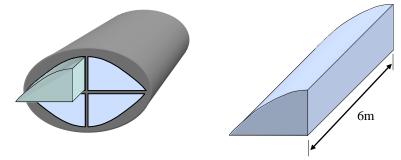
Establish the equation of the circle in this new position.



4

6

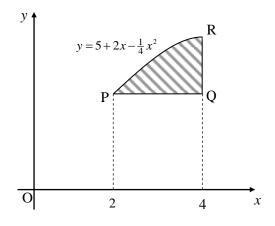
- 5. A sequence is defined by the recurrence relation $U_{n+1} = aU_n + b$, where a and b are constants.
 - (a) Given that $U_0 = a 2$ and b = 1, show clearly that $U_1 = a^2 2a + 1$.
 - (b) Hence find an expression for U_2 in terms of a.
 - (c) Given now that $U_2 = 37$, form an equation and solve it to find *a*. Explain why there is only one possible answer for *a*.
- 6. A titanium rod from a nuclear reactor is a solid prism which slots into an elliptical chamber along with three other identical rods. It has a cross-sectional shape made up of two straight lines and a curved edge.



Each rod has a depth of 6 metres.

The cross section of a rod is shown geometrically in the coordinate diagram below where the **units are in metres**. The diagram is not drawn to scale.

The curved section is part of the graph of the curve with equation $y = 5 + 2x - \frac{1}{4}x^2$. PQ is horizontal and QR is vertical.



(a) Calculate the shaded area in square metres.

(b) Hence calculate the **total volume** of titanium contained in **all four rods**.

7 2

2

2

7. The angle θ is such that $\tan \theta = \frac{2}{\sqrt{2}}$ where $0 < \theta < \frac{\pi}{2}$.

- (a) Find the exact values of $\sin\theta$ and $\cos\theta$.
- (b) Hence show clearly that the exact value of $\sin(\theta + \frac{\pi}{3})$ can be expressed as

$$\sin(\theta + \frac{\pi}{3}) = \frac{1}{6}(\sqrt{6} + 3).$$
 5

8. Three functions are defined on suitable domains as

$$f(x) = x - 1$$
, $g(x) = 3x^2 - 3$ and $h(x) = x^3 - 6x$.

- (a) Given that y = g(f(x)) h(x), find a formula for y in its simplest form. 3
- (b) Hence find the coordinates of the maximum turning point of the graph of y = g(f(x)) h(x), justifying your answer. 4
- 9. An equation is given as ax(x-1) = c(x-1), where $a \neq 0$, $c \neq 0$, and a and c are constants.
 - (a) Show clearly that this equation can be written in the form

$$ax^2 - (a+c)x + c = 0.$$
 2

(b) What condition needs to be met for this quadratic equation to have equal roots? 4

[END OF QUESTION PAPER]

Higher Prelim Revision 2

	Give 1 mark for each •	Illustration(s) for awarding each mark
1.	(a) ans: M(9,3) 1 mark • 1 answer	(a) •1 M(9,3) (b) •1 $m_{AC} = \frac{3-0}{9+0} = \frac{1}{3}$
	(b) ans: $y = \frac{1}{3}x$ 2 marks •1 for gradient •2 for strategy (c) ans: i) $y = -3x + 60$, C(18,6)	(b) • 1 $m_{AC} = \frac{1}{9+0} = \frac{1}{3}$ • 2 $y = mx$ $y = \frac{1}{3}x$
	 i) i) y = -5x + 60 , C(18,0) ii) congruent 6 marks i) 1 for gradient of BC 2 for sub. to equ. of line 3 knowing to solve system 4 coordinates of C ii) 5 answer 6 explanation 	(c) i) •1 $m = -3$ •2 $y-0 = -3(x-20)$ •3 $\frac{1}{3}x = -3x + 60$ •4 $x = 18 \implies \therefore y = 6$ ii) •5 congruent (or equiv.) •6 explanation of parallel lines (or any suitable explanation)
2.	ans: $m = 2$ 6 marks•1for dealing with denominator•2for simplifying•3diff. first term•4diff. second term•5substituting•6answer	•1 $y = x^{-\frac{1}{2}}(x^2 - 4x)$ •2 $y = x^{\frac{3}{2}} - 4x^{\frac{1}{2}}$ •3 $\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}}$ •4 $\frac{dy}{dx} = \dots - 2x^{-\frac{1}{2}}$ •5 $m = \frac{3}{2}\sqrt{4} - \frac{2}{\sqrt{4}}$ (or equiv.) •6 $m = 2$
3.	ans:see sketch4 marks•1for stat. points as roots•2for basic shape left side•3basic shape right side•4annotation	y 5 10 x or equivalent sketch
4.	ans: $a = 2$, $b = 1$ 4 marks•1sub. for the composite function•2expanding and simplifying•3factorising•4answers	•1 $g(h(x)) = (2x+1)^2 - 3(2x+1)$ •2 $g(h(x)) = 4x^2 - 2x - 2$ •3 $= 2(2x+1)(x-1)$ •4 $a = 2$, $b = 1$

	Give 1 mark for each •	Illustration(s) for awarding each mark
5.	(a) ans: proof3 marks•1for area strategy•2for substitution•3for answer(b) ans: $\theta = \frac{\pi}{9}$ 3 marks•1for strategy and writing $\tan 3\theta =$ •2for knowing exact value•3calculating answer	(a) $ \begin{array}{ccc} \bullet 1 & A = \frac{1}{2}bh \\ \bullet 2 & A = \frac{1}{2}bh = \frac{1}{2} \times x \times 4\sqrt{3} \\ \bullet 3 & 8\sqrt{3} = x \times 2\sqrt{3} \therefore x = 4 \\ \end{array} $ (b) $ \begin{array}{ccc} \bullet 1 & \tan 3\theta = \frac{4\sqrt{3}}{4} = \sqrt{3} \\ \bullet 2 & If \tan 3\theta = \sqrt{3} then 3\theta = \frac{\pi}{3} \\ \bullet 3 & \therefore \theta = \frac{\pi}{9} \end{array} $
6.	ans: $a = \frac{2}{3}$ 7 marks•1for setting up integral•2integrating correctly•3making integral equal 4•4substituting•5simplifying to quadratic equ.•6factorising•7solving to answer	•1 $A = \int_{1}^{1+a} (6x-2) dx$ •2 $= \left[3x^2 - 2x \right]_{1}^{1+a}$ •3 $\left[3x^2 - 2x \right]_{1}^{1+a} = 4$ •4 $(3(1+a)^2 - 2(1+a)) - (1) = 4$ •5 $3a^2 + 4a - 4 = 0$ •6 $(3a-2)(a+2) = 0$ •7 $\therefore a = \frac{2}{3}$ (note: -2 is a discard)
7.	 (a) ans: since for both -1 < a < 1 1 mark 1 for statement (b) ans: b = 5 4 marks 1 know how to find a limit 2 substitute 3 equate both limits 4 solve for b 	(a) •1 since for both $-1 < a < 1$ (or equiv.) (b) •1 $L = \frac{b}{1-a}$ or equivalent •2 $L_1 = \frac{20}{1-0.6}$, $L_2 = \frac{b}{1-0.9}$ •3 $\frac{20}{1-0.6} = \frac{b}{1-0.9}$ •4 $b = \frac{20 \times 0.1}{0.4} = 5$

	Give 1 mark for each ●	Illustration(s) for awarding each mark
8.	(a) ans: $x^2 + y^2 - 10y = 0$ 4 marks • 1 for radius (5 units) • 2 for strategy • 3 for substituting in formula • 4 for expanding	(a) •1 $r = 5$ •2 $(x-a)^2 + (y-b)^2 = r^2$ •3 $(x-0)^2 + (y-5)^2 = 25$ •4 $x^2 + y^2 - 10y + 25 - 25 = 0$
	(b) ans: $k = 2$ 5 marks •1 knowing to substitute point in equ. •2 simplifying to quadratic •3 solving to answers •4 discarding $k = 8$ •5 answer	(b) •1 $4^{2} + k^{2} - 10k = 0$ •2 $k^{2} - 10k + 16 = 0$ •3 $(k - 8)(k - 2) = 0$ •4 $\therefore k = 8$ •5 $k = 2$
	(c) ans: $3y = 4x - 10$ 3 marks • 1 for gradient of radius • 2 for gradient of tangent • 3 sub. to answer	(c) •1 $m_r = \frac{2-5}{4-0} = -\frac{3}{4}$ •2 $m_{tan} = \frac{4}{3}$ •3 $y-2 = \frac{4}{3}(x-4)$
9.	(a) ans: $\frac{dy}{dx} = 3(p+1)x^2 - 6px + 4$ 2 marks • 1 differentiating first term • 2 differentiating remainder	(a) •1 $\frac{dy}{dx} = 3(p+1)x^2$ (or equiv.) •2 $\frac{dy}{dx} =$
	(b) ans: $p = 2$ 5 marks •1 realising strategy i.e. equal roots •2 for <i>a</i> , <i>b</i> and <i>c</i> •3 for substitution •4 for simplifying + factorising •5 choosing correct answer	(b) •1 $b^2 - 4ac = 0$ (stated <u>or</u> implied) •2 $a = 3p + 3, b = -6p, c = 4$ •3 $(-6p)^2 - 16(3p + 3) = 0$ •4 $36p^2 - 48p - 48 = 0$ 12(3p+2)(p-2) = 0 •5 $\therefore p = -\frac{2}{3}, p = 2$

Total 60 marks

Higher Prelim Revision 2

	Give 1 mark for each •	Illustration(s) for awarding each mark
1.	(a) ans: $3y = 2x+3$ 2 marks •1 for gradient •2 for sub. to answer (b) ans: C(3,3) 3 marks •1 realising mid-point gives $x = 3$ •2 knowing to sub. in equation •3 calculating <i>y</i> correctly then answer (c) ans: 67° 3 marks •1 for knowing to use $\tan \theta = m$ •2 equating and calculating an angle •3 working towards and finding angle	(a) $ \begin{array}{ccc} \bullet 1 & m = \frac{5+1}{6+3} = \frac{2}{3} \\ \bullet 2 & y-5 = \frac{2}{3}(x-6) \\ (b) & \bullet 1 & mid_{AB} = \frac{-3+9}{2} = 3 \\ \bullet 2 & \therefore 3y = 2(3)+3 \\ \bullet 3 & 3y = 9 & \therefore y = 3 \Longrightarrow \ C(3,3) \\ (c) & \bullet 1 & \tan \theta = m \\ \bullet 2 & \tan D\hat{A}B = \frac{2}{3} & \therefore \angle DAB \approx 33 \cdot 7^{\circ} \\ \bullet 3 & \text{working through isosceles triangle} \\ \text{then } \angle BCD \approx 67^{\circ} \end{array} $
2.	(a) ans: 432 feet4 marks•1knowing to differentiate•2differentiating and solving to zero•3finding t for max. height•4substituting to find height(b) ans: No since $28 \cdot 8 < 48$ ft/s2 marks•1evaluating value of derivative•2answer + viable explanation(c) ans: 420 feet3 marks•1for knowing to solve derivative to 48•2calculating t•3substituting t to answer	(a) •1 max height when $h'(t) = 0$ •2 288-96t = 0 •3 \therefore t = 3 •4 $h(3) = 288(3) - 48(3^2) = 432$ ft (pupils may use mid-point of roots to find max. height) (b) •1 $h'(2 \cdot 7) = 288 - 96(2 \cdot 7) = 28 \cdot 8$ ft/s •2 No since $28 \cdot 8 < 48$ ft/s (c) •1 288-96t = 48 •2 t = 2 \cdot 5 sec. •3 $h(2 \cdot 5) = 720 - 300 = 420$ ft
3.	ans: $\{194 \cdot 5^{\circ}, 345 \cdot 5^{\circ}\}$ 6 marks •1 double angle substitution •2 simplifying to standard quad. form •3 factorising and solving •4 discarding -2 solution •5 for 1 st angle •6 for 2 nd angle	•1 9sin x + 4 = 2(1 - 2sin ² x) •2 4sin ² x + 9sin x + 2 = 0 •3 (4sin x + 1)(sin x + 2) = 0 ∴ sin x = - ¹ / ₄ or sin x = -2 •4 sin x = - ¹ / ₄ stated or implied •5 x = 180 + 14 · 5 = 194 · 5 •6 x = 360 - 14 · 5 = 345 · 5

	Give 1 mark for each •	Illustration(s) for awarding each mark
4.	(a) ans: $P(4,6)$ 4 marks •1 startegy + substituting •2 simplifying to quadratic equation •3 factorising + first coordinate •4 second coordinate (b) ans: $(x-14)^2 + (y-16)^2 = 20$ 5 marks •1 stepping out strategy •2 finding original centre •3 establishing the new centre •4 calculating radius (<i>may use pyth.</i>) •5 substituting in general equ. to answer	(a) •1 $(2y-8)^2 + y^2 - 4(2y-8) - 20y + 84 = 0$ •2 $5y^2 - 60y + 180 = 0$ •3 $5(y-6)(y-6) = 0$ \therefore $y = 6$ •4 $x = 2(6) - 8 = 4$ (b) •1 From P to Q 12 along , 6 up (or equivalent strategy) •2 $C_1(2,10)$ •3 $C_2(2+12,10+6) = C_2(14,16)$ •4 $r = \sqrt{(-4)^2 + (-10)^2 - 84} = \sqrt{20}$ •5 $(x-14)^2 + (y-16)^2 = 20$
5.	(a) ans: proof 2 marks •1 for knowing to substitute •2 for simplifying to answer (b) ans: $U_2 = a^3 - 2a^2 + a + 1$ 2 marks •1 knowing to sub (a) into $U_2 =$ •2 answer (c) ans: $a = 4$, quotient has no roots (or equivalent) 4 marks •1 strategy (synthetic division) •2 finding answer for a •3 checking for further roots •4 explanation for no further roots	(a) •1 $U_1 = a(a-2)+1$ •2 $U_1 = a^2 - 2a + 1$ (b) •1 $U_2 = aU_1 + b$ $U_2 = a(a^2 - 2a + 1) + 1$ •2 $U_2 = a^3 - 2a^2 + a + 1$ (c) •1 $a \begin{bmatrix} 1 & -2 & 1 & -36 \\ 4 & 8 & 36 \\ 1 & 2 & 9 & 0 \end{bmatrix}$ $\therefore a = 4$ •3 for $x^2 + 2x + 9$ $b^2 - 4ac = -32$ •4 since $b^2 - 4ac < 0$, no further roots
6.	(a) ans: Area = $1\frac{1}{3}$ m²7 marks•1for setting up integral•2integrating•3substituting in limits•4calculating area•5finding y coordinate at $x = 2$ •6calculating area of rectangle•7subtracting to work out shaded area(b) ans: 32 m^3 2 marks•1for knowing how to calculate volume•2for calculations to answer	(a) •1 $A = \int_{-2}^{4} (5 + 2x - \frac{1}{4}x^2) dx$ •2 $= \left[5x + x^2 - \frac{1}{12}x^3 \right]_{-2}^{4}$ •3 $= (20 + 16 - 5\frac{1}{3}) - (10 + 4 - \frac{2}{3})$ •4 $= 17\frac{1}{3}$ square metres •5 $y = 5 + 2(2) - \frac{1}{4}(2^2) = 8$ •6 $A_{rec} = 8 \times 2 = 16$ square metres •7 $A_{sh} = 17\frac{1}{3} - 16 = 1\frac{1}{3}$ sq. m (b) •1 $V = face \ area \times depth$ •2 $V = 1\frac{1}{3} \times 6 = 8 \dots V_{tot} = 8 \times 4 = 32 \text{ m}^3$

	Give 1 mark for each •	Illustration(s) for awarding each mark
7.	(a) ans: $\sin \theta = \frac{2}{\sqrt{6}}$, $\cos \theta = \frac{\sqrt{2}}{\sqrt{6}}$ 3 marks •1 drawing a R.A. triangle •2 calculating hypotenuse •3 lifting answers (b) ans: proof 5 marks •1 expanding	(a) •1 drawing triangle •2 $h^2 = 2 + 4 = 6$ $\therefore h = \sqrt{6}$ •3 $\sin \theta = \frac{2}{\sqrt{6}}$, $\cos \theta = \frac{\sqrt{2}}{\sqrt{6}}$ (b) •1 $\sin(\theta + \frac{\pi}{3}) = \sin \theta \cos \frac{\pi}{3} + \cos \theta \sin \frac{\pi}{3}$ •2 $= \frac{2}{\sqrt{6}}(\frac{1}{2}) + \frac{\sqrt{2}}{\sqrt{6}}(\frac{\sqrt{3}}{2})$
	 2 putting in all exact values 3 simplifying 4 rationalising the denominator 5 taking out common factor to answer 	• 3 $= \frac{1}{\sqrt{6}} + \frac{1}{2}$ • 4 $= \frac{\sqrt{6}}{6} + \frac{1}{2}$ • 5 $\sin(\theta + \frac{\pi}{3}) = \frac{1}{6}(\sqrt{6} + 3)$
8.	(a) ans: $y = 3x^2 - x^3$ 3 marks • 1 dealing with the composite function • 2 simplifying the composite function • 3 subtracting $h(x)$ to answer	(a) •1 $g(f(x)) = 3(x-1)^2 - 3$ •2 $g(f(x)) = 3x^2 - 6x$ •3 $y = 3x^2 - 6x - (x^3 - 6x) = 3x^2 - x^3$
	(b) ans: $(2,4)$ 4 m •1 knowing to differentiate and solve to 0 •2 finding the two <i>x</i> values •3 finding corresponding <i>y</i> values •4 justifying $x = 2$ gives max. \therefore (2,4)	(b) •1 $\frac{dy}{dx} = 6x - 3x^2 = 0$ •2 $3x(2-x) = 0$ \therefore $x = 0$ or $x = 2$ •3 $(0,0)$, $y = 3(2^2) - 2^3 = 4$ \therefore (2,4) •4 justification table (or 2 nd deriv.)
9.	 (a) ans: proof 2 marks 1 expanding and taking to one side 2 removing common factor to required ans. (b) ans: a must equal c (a = c) 4 marks 	(a) •1 $ax^2 - ax - cx + c = 0$ •2 $ax^2 - (a+c)x + c = 0$
	 1 condition for equal roots stated or implied 2 drawing out <i>a,b</i> & <i>c</i> and sub. in discrim. 3 simplifying to perfect square 4 conclusion 	(b) •1 for equal roots $b^2 - 4ac = 0$ •2 $a = a$, $b = -(a+c)$, $c = c$ $(a+c)^2 - 4ac = 0$ •3 $a^2 - 2ac - c^2 = (a-c)^2 = 0$ •4 For $(a-c)^2 = 0$ then $a = c$

Total 70 marks