

## Equations, Inequations & Algebra

|         | 10. To hire a car costs £25 per day plus a mileage charge. The first 200 miles are free with each additional mile charged at 12 pence. |   |   |
|---------|----------------------------------------------------------------------------------------------------------------------------------------|---|---|
|         | CAR HIRE                                                                                                                               |   |   |
|         | £25 per day                                                                                                                            |   |   |
| 2008 PI | <ul> <li>first 200 miles free</li> <li>each additional mile only 12p</li> </ul>                                                        |   |   |
|         | (a) Calculate the cost of hiring a car for 4 days when the mileage is 640 miles.                                                       | 1 |   |
|         | (b) A car is hired for d days and the mileage is m miles where $m > 200$ .                                                             |   | 3 |
|         | Write down a formula for the cost $\pounds C$ of hiring the car.                                                                       |   |   |
| Ans     | (a) £152.80 (b) $C = 25d + 0.12m - 24$                                                                                                 |   |   |
| 2008 PI | 3. $W = BH^2$ . Change the subject of the formula to $H$ .                                                                             | 2 |   |
| Ans     | $H = \sqrt{\frac{W}{B}}$                                                                                                               |   |   |

|         | •     |                                                                                             |   | , |
|---------|-------|---------------------------------------------------------------------------------------------|---|---|
|         | 6.    | Jane enters a two-part race.                                                                |   |   |
| l       |       | (a) She cycles for 2 hours at a speed of $(x + 8)$ kilometres per hour.                     |   |   |
|         |       | Write down an expression in $x$ for the distance cycled.                                    | 1 |   |
| 2008 PI |       | (b) She then runs for 30 minutes at a speed of x kilometres per hour.                       |   |   |
| 20      |       | Write down an expression in $x$ for the distance run.                                       | 1 |   |
|         |       | (c) The <b>total</b> distance of the race is 46 kilometres.                                 | • |   |
|         |       | Calculate Jane's <b>running</b> speed.                                                      |   | 3 |
| Ans     | (a) 2 | (x+8) (b) $0.5x$ (c) $12  km/h$ .                                                           |   |   |
|         | 7.    | The 4th term of each number pattern below is the <b>mean</b> of the previous three terms.   |   |   |
|         |       | (a) When the first three terms are 1, 6, and 8, calculate the 4th term.                     | 1 |   |
| 2008 PI |       | (b) When the first three terms are $x$ , $(x + 7)$ and $(x + 11)$ , calculate the 4th term. |   | 1 |
| 2(      |       | (c) When the first, second and fourth terms are                                             |   |   |
|         |       | -2x, $(x+5)$ , $(2x+4)$ ,                                                                   |   |   |
|         |       | calculate the 3rd term.                                                                     |   | 2 |
| Ans     | (a) 5 | (b) x + 6 	 (c) 7x + 7                                                                      |   |   |
| I       | 12.   | Given that                                                                                  |   |   |
| 8 P     |       | $x^2 - 10x + 18 = (x - a)^2 + b,$                                                           |   |   |
| 2008    |       | find the values of $a$ and $b$ .                                                            | 3 |   |
| Ans     | a=3   | , $b = -7$                                                                                  |   |   |
|         | 13.   | A new fraction is obtained by adding x to the numerator and denominator                     |   |   |
| Ia      |       | of the fraction $\frac{17}{24}$ .                                                           |   |   |
| 2008 PI |       | This new fraction is equivalent to $\frac{2}{3}$ .                                          |   |   |
|         |       | Calculate the value of $x$ .                                                                |   | 3 |
| Ans     | x = - | }                                                                                           |   |   |

| 2007 PI | 4. $P = \frac{2(m-4)}{3}$                                                       |   |   |
|---------|---------------------------------------------------------------------------------|---|---|
| 2(      | Change the subject of the formula to $m$ .                                      | 3 |   |
| Ans     | $m = \frac{3P+8}{2} \qquad \text{or} \qquad m = \frac{3P}{2} + 4$               |   |   |
| . PI    | 5. Remove brackets and simplify                                                 |   |   |
| 2007 PI | $(2x+3)^2-3(x^2-6)$ .                                                           | 3 |   |
| Ans     | $x^2 + 12x + 27$                                                                |   |   |
|         | 14. The sum $S_n$ of the first $n$ terms of a sequence, is given by the formula |   |   |
| PI      | $S_n = 3^n - 1.$                                                                |   |   |
| 2007 PI | (a) Find the <b>sum</b> of the first 2 terms.                                   |   | 1 |
|         | (b) When $S_n = 80$ , calculate the value of $n$ .                              |   | 2 |
| Ans     | (a) 8 (b) 4                                                                     | 1 |   |
| P2      | 4. Solve the inequality                                                         |   |   |
| 2007 P2 | $\frac{x}{4} - \frac{1}{2} < 5.$                                                | 2 |   |
| Ans     | x < 22                                                                          | 1 |   |
| 2006 PI | 6. Solve the equation $x-2(x+1)=8.$                                             | 3 |   |
| Ans     | -10                                                                             |   |   |





|         | 11. (a) One session at the Leisure Centre costs £3.                                                                                                  |   |   |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
|         | £3 per session                                                                                                                                       |   |   |
|         | Write down an algebraic expression for the cost of $x$ sessions.                                                                                     |   | 1 |
|         | (b) The Leisure Centre also offers a monthly card costing £20. The <b>first 6</b> sessions are then free, with each additional session costing £2.   |   |   |
| 2006 PI | Monthly card<br>£20                                                                                                                                  |   |   |
|         | * first 6 sessions free  * each additional session £2                                                                                                |   |   |
|         | (i) Find the <b>total</b> cost of a monthly card and 15 sessions.                                                                                    | 1 |   |
|         | (ii) Write down an algebraic expression for the <b>total</b> cost of a monthly card and <i>x</i> <b>sessions</b> , where <i>x</i> is greater than 6. |   | 2 |
|         | (c) Find the minimum number of sessions required for the monthly card to be the cheaper option.                                                      |   | 3 |
|         | Show all working.                                                                                                                                    |   |   |
| Ans     | (a) $3x$ (b)(i) £38 (ii) $2x + 8$ (c) 9                                                                                                              |   |   |
| 6 P2    | 4. (a) Expand and simplify                                                                                                                           |   |   |
| 2006 P2 | (x+4)(3x-1).                                                                                                                                         | 1 |   |
| Ans     | $3x^2 + 11x - 4$                                                                                                                                     |   |   |

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\top$ |          |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|
| 2005 PI | 6. Solve the equation $\frac{2}{x} + 1 = 6.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3      |          |
| Ans     | $\frac{2}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          |
| 2005 PI | <ul> <li>9. (a) Emma puts £30 worth of petrol into the empty fuel tank of her car.  Petrol costs 75 pence per litre.  Her car uses 5 litres of petrol per hour, when she drives at a particular constant speed.  At this constant speed, how many litres of petrol will remain in the car after 3 hours.</li> <li>(b) The next week, Emma puts £20 worth of petrol into the empty fuel tank of her car.  Petrol costs c pence per litre.  Her car uses k litres of petrol per hour, when she drives at another constant speed.  Find a formula for R, the amount of petrol remaining in the car after t hours.</li> </ul> | 2      | 3        |
| Ans     | (a) 25 litres (b) $R = \frac{2000}{c} - kt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | <u> </u> |
| 2005 P2 | 8. The side length of a cube is $2x$ centimetres.  The expression for the volume in cubic centimetres is equal to the expression for the surface area in square centimetres.  Calculate the side length of the cube.                                                                                                                                                                                                                                                                                                                                                                                                      |        | 5        |
| Ans     | 6cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          |



| PI      | 3. $A = 2x^2 - y^2$ .                                                                                                                                      |   |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| 2004 PI | Calculate the value of A when $x = 3$ and $y = -4$ .                                                                                                       | 2 |  |  |  |
| Ans     | 2                                                                                                                                                          |   |  |  |  |
| 2003 PI | 3. Simplify $3(2x-4)-4(3x+1)$ .                                                                                                                            | 3 |  |  |  |
| Ans     | -6x - 16                                                                                                                                                   |   |  |  |  |
|         | 13. A rectangular clipboard has a triangular plastic pocket attached as shown in Figure 1.  Figure 1.  The pocket is attached along edges TD               |   |  |  |  |
| 2003 PI | and DB as shown in Figure 2. B is $x$ centimetres from the corner C.  The length of the clipboard is $4x$ centimetres and the breadth is $3x$ centimetres. |   |  |  |  |
|         | The area of the pocket is a quarter of the area of the clipboard.                                                                                          |   |  |  |  |
|         | Find, in terms of $x$ , the length of TD.                                                                                                                  | 4 |  |  |  |
| Ans     | TD = 3x                                                                                                                                                    |   |  |  |  |



|         |       |                                                                                                                                           | 1 |        |
|---------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|---|--------|
| 2003 P2 | 5.    | The number of diagonals, $d$ , in a polygon with $n$ sides is given by the formula                                                        |   |        |
|         |       | $d=\frac{n(n-3)}{2}.$                                                                                                                     |   |        |
| 2       |       | A polygon has 20 diagonals.                                                                                                               |   |        |
|         |       | How many sides does it have?                                                                                                              |   | 4      |
| Ans     | 8     |                                                                                                                                           |   |        |
|         | 10.   | A sheep shelter is part of a cylinder as shown in Figure 1.                                                                               |   |        |
|         |       | It is 6 metres wide and 2 metres high.                                                                                                    |   |        |
|         |       | Figure 1                                                                                                                                  |   |        |
| 2003 P2 |       | The cross-section of the shelter is a segment of a circle with centre O, as shown in Figure 2.  OB is the radius of the circle.  Figure 2 |   |        |
|         |       | Calculate the length of OB.                                                                                                               |   | 4      |
| Ans     | 3.25m |                                                                                                                                           |   | ]      |
| 2002 PI | 3.    | Solve the inequality $5 - x > 2(x + 1)$ .                                                                                                 | 3 |        |
| Ans     | x < 3 |                                                                                                                                           | 1 | $\Box$ |
|         |       |                                                                                                                                           |   |        |

| 2002 PI | 6. $L = \frac{1}{2}(h-t)$ .<br>Change the subject of the formula to $h$ .                                                                                                                  | 2 |   |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| Ans     | h = 2L + t                                                                                                                                                                                 |   |   |
|         | 9. Esther has a new mobile phone and considers the following daily rates.                                                                                                                  |   |   |
|         | Easy Call Green Call                                                                                                                                                                       |   |   |
|         | 25 pence per minute for the first 3 minutes  5 pence per minute after the first three minutes  40 pence per minute for the first 2 minutes  2 pence per minute after the first two minutes |   |   |
| 2002 P2 | (a) For Easy Call, find the cost of ten minutes in a day.                                                                                                                                  | 1 |   |
|         | (b) For Easy Call, find a formula for the cost of "m" minutes in a day, $m > 3$ .                                                                                                          |   | 1 |
|         | <ul><li>(c) For Green Call, find a formula for the cost of "m" minutes in a day,</li><li>m &gt; 2.</li></ul>                                                                               |   | 1 |
|         | (d) Green Call claims that its system is cheaper.                                                                                                                                          |   |   |
|         | Find <b>algebraically</b> the least number of minutes (to the nearest minute) which must be used each day for this claim to be true.                                                       |   | 3 |
| Ans     | 9. (a) 110 p                                                                                                                                                                               |   |   |
|         | (b)  c = 75 + 5 (m - 3)                                                                                                                                                                    |   |   |
|         | $(c)  c = 80 + 2 \ (m-2)$                                                                                                                                                                  |   |   |
|         | (d) 6 minutes                                                                                                                                                                              |   |   |
| PI      | 4. Solve algebraically the equation                                                                                                                                                        |   |   |
| 2001 PI | $2x - \frac{(3x - 1)}{4} = 4.$                                                                                                                                                             | 3 |   |
| Ans     | x = 3                                                                                                                                                                                      |   |   |



| ) PI | 8.      | Solve algebraically the inequality |   |  |
|------|---------|------------------------------------|---|--|
| 2000 |         | 2y < 3 - (y+6).                    | 3 |  |
| Ans  | y < - 2 |                                    |   |  |