Quadratic Equations & Graphs

11. The minimum number of roads joining 4 towns to each other is 6 as shown.

008 PZ

The minimum number of roads, r, joining n towns to each other is given by the formula

$$r = \frac{1}{2}n(n-1).$$

(a) State the minimum number of roads needed to join 7 towns to each other.

1

(b) When r = 55, show that $n^2 - n - 110 = 0$.

2

(c) Hence find **algebraically** the value of n.

3

Ans (a) 21 (b) Proof (c) 11

8. The curved part of the letter A in the Artwork logo is in the shape of a parabola.

The equation of this parabola is y = (x-8)(2-x).

(a) Write down the coordinates of Q and R.

(b) Calculate the height, h, of the letter A.

2

Ans (a) Q(2,0), R(8,0)

(b) 25 units

2. Solve the equation

$$3x^2 - 2x - 10 = 0.$$

Give your answer correct to 2 significant figures.

4

Ans | 2.2, -1.5

4

It consists of three rectangles: one red, one yellow and one blue.

The yellow rectangle measures 10 centimetres by x centimetres.

The width of the red rectangle is x centimetres.

Show that the area, A, of the blue rectangle is given by the expression

$$A = x^2 - 16x + 60.$$

(b) The area of the blue rectangle is equal to $\frac{1}{5}$ of the total area of the logo. Calculate the value of x.

Ans (a) Proof (b) 4cm

13.	The profit made by a pu	ublishing c	ompany of	f a magazine	is calculated by
	the formula				

$$y = 4x \left(140 - x\right),$$

where y is the profit (in pounds) and x is the selling price (in pence) of the magazine.

The graph below represents the profit y against the selling price x.

Find the maximum profit the company can make from the sale of the magazine.

\$\frac{\pmathrm{\

4

11. A rectangular lawn has a path, 1 metre wide, on 3 sides as shown.

004 P

The breadth of the lawn is x metres.

The length of the lawn is three times its breadth.

The area of the lawn equals the area of the path.

(a) Show that $3x^2 - 5x - 2 = 0$.

(b) Hence find the **length** of the lawn.

Ans

(a) area of lawn = $3x^2$ area of path = 5x + 2 $3x^2 = 5x + 2$ $3x^2 - 5x - 2 = 0$

(b) 6 m

The graph cuts the y-axis at (0, -6) and the x-axis at (-1, 0) and (3, 0).

- (a) Write down the values of a and b.
- (b) Calculate the value of k.
- (c) Find the coordinates of the minimum turning point of the function.

2

- Ans (a) -1, 3 (b) 2 (c) (1,-8)
 - **9.** Two functions are given below.

$$f(x) = x^2 + 2x - 1$$
$$g(x) = 5x + 3$$

Find the values of x for which f(x) = g(x).

4

Ans
$$x = -1, 4$$

	3. Solve the equation				
P2	$2x^2 + 3x - 7 = 0.$				
2002 P2	Give your answers correct to 1 decimal place.	4			
	Give your answers correct to I decimal place.				
	10.00				
Ans	x = 1.3, -2.8				
	11. A rectangular wall vent is 30 centimetres long and 20 centimetres wide.				
	It is to be enlarged by increasing both the length and the width by x centimetres.				
2001 P2	(a) Write down the length of the new vent.		1		
	(b) Show that the area, A square centimetres, of the new vent is given by		2		
200	$A = x^2 + 50x + 600.$				
	(c) The area of the new vent must be at least 40% more than the original area.				
	Find the minimum dimensions, to the nearest centimetre, of the new vent.		5		
Ans	(a) $30 + x$				
	(b) $A = (30 + x)(20 + x)$				
	$= 600 + 30x + 20x + x^2$				
	$= 600 + 50x + x^2$				
	(c) Minimum dimensions are				
	35 cm and 25 cm				

8. The diagram below shows part of the graph of $y = 4x^2 + 4x - 3$. The graph cuts the y-axis at A and the x-axis at B and C.

- - (a) Write down the coordinates of A.
 - (b) Find the coordinates of B and C.

 - (c) Calculate the minimum value of $4x^2 + 4x 3$.
- Ans (a) A (0,-3)
 - (b) $B(-\frac{3}{2},0) C(\frac{1}{2},0)$
 - (c) -4
- 3. Solve the equation $x^2 + 3x 5 = 0$.

 Give your answer **correct to 2 significant figures**.

 4

Ans x = 1.2, -4.2