

## **Trigonometry (Exam Type Questions)**

1. The sketch below shows a plot of land purchased to build a house on.



Calculate the value of the plot shown to the nearest  $\pounds 10$ .

The distance from the centre of a regular octagon to one of its vertexes is 5 cm.
Calculate the area of the octagon.



**3.** Two security cameras are positioned on a beam in a warehouse 30 metres apart.

One camera has an angle of depression of  $37^{\circ}$  and the other camera has an angle of depression of  $46^{\circ}$ .

Calculate the height, *h* metres, of the beam above the ground.



www.national5maths.co.uk for all you need to pass Maths in one place

4. Triangle PQR has sides with lengths, in centimetres, as shown.



Show clearly that  $\cos PQR = 0.75$ .

5. A flagpole is attached to a wall and is supported by a wire PQ as shown in the diagram.

The wire is 3.5 metres long and makes an angle of  $55^{\circ}$  with the vertical wall.

Given that the point P is 4.5 metres above R in the diagram, calculate the length of the flagpole.



6. A triangular sail designed for a racing yacht is shown below.

Two of its edges measure 6 metres and 3.2 metres.





Given that the sail has a **perimeter** of 15.5 metres, calculate the **area** of the sail.

7. A sketch of Lee's garden is shown below.



- (a) Calculate the size of angle ABC.
- (b) Hence, or otherwise, calculate the area of the garden.
- 8. The diagram below shows a steel plate ABCD.



- (a) Calculate the length of BD correct to 1 decimal place.
- (b) Find the size of angle BDC correct to the nearest degree.
- (c) Hence calculate the length of BC given that DC = 25 cm.



10. A ship leaves a port on a bearing of 073° and sails 63km. The ship then changes course and sails a further 60km on a bearing of 110° where it anchors. When it anchors it is 95km from the port. Calculate the bearing of the ship from the port at this point.



**11.** A ship's captain is plotting a course for the next voyage.

He knows that he has to sail from Port D to port E on a bearing of  $067^{\circ}$  for a distance of 800km and from there to Port F on a bearing of  $123^{\circ}$ .

His course is shown in the diagram below.



- (a) Make a copy of the diagram and calculate the size of angle DEF.
- (b) New instructions come through which inform the captain that he has to sail directly from Port D to Port F, a distance of 1750km.

Calculate the bearing on which the ship should sail in order to carry out these instructions. Give the bearing to the nearest degree.

**12.** The diagram below, which is not drawn to scale, represents the positions of three mobile phone masts.

Mast Q is on a bearing of 100° from mast P and is 40km away.

100

The bearing of mast R from mast Q is 150°.

Masts P and R are 66km apart.

(a) Use the information in the diagram to establish the size of angle PQR.

40 km

66 km

- (b) Hence find the bearing of mast P from mast R.
- 13. A helicopter sets out from its base P and flies on a bearing of  $123^{\circ}$  to point Q where it changes course to  $060^{\circ}$  and flies 18 km to point R.

When the helicopter is at point R it is 22 km from its starting point.



Ņ

150

Ņ

R

Q

- (a) Find the size of angle PQR.
- (b) Calculate the bearing on which the helicopter must fly to return directly to its base i.e. the shaded angle in the diagram.