3

1

2

Trig. Graphs & Equations

12. The diagram shows part of the graph of $y = \tan x^{\circ}$.

The line y = 5 is drawn and intersects the graph of $y = \tan x^{\circ}$ at P and Q.

- (a) Find the x-coordinates of P and Q.
- (b) Write down the x-coordinate of the point R, where the line y = 5 next intersects the graph of $y = \tan x^{\circ}$.

Ans $(a) 78.7^{\circ}, 258.7^{\circ}$

(b) 438.7°

13. Part of the graph of $y = \cos bx^{\circ} + c$ is shown below.

Write down the values of b and c.

Ans b = 2, c = 3

2007 P2	10.	Solve algebraically the equation $5\cos x^{\circ} + 4 = 0, \qquad 0 \le x < 360.$	3				
Ans	143 10	, 216.9°					
71713	10.	Emma goes on the "Big Eye".					
2006 P2	10.	Her height, h metres, above the ground is given by the formula $h = -31 \cos t^{\circ} + 33$ where t is the number of seconds after the start.					
		(a) Calculate Emma's height above the ground 20 seconds after the start.	2				
		(b) When will Emma first reach a height of 60 metres above the ground?		3			
		(c) When will she next be at a height of 60 metres above the ground?		1			
Ans	(a) 3.8	27 m (b) 150.6 seconds (c) 209.4 seconds					
	11.	(a) Solve algebraically the equation					
P2		$\sqrt{3}\sin x^{\circ} - 1 = 0 \qquad 0 \le x < 360.$	3				
2005 P2		(b) Hence write down the solution of the equation					
		$\sqrt{3}\sin 2x^{\circ} - 1 = 0 \qquad 0 \le x < 90.$		1			
Ans	Ans (a) 35.3°, 144.7° (b) 17.6°, 72.4°						

184.6 degrees, 355.4 degrees

2000 P2	6.	Triangle ABC has an area of 14 square centimetres. AB is 6 centimetres and AC is 7 centimetres. Calculate the possible sizes of angle BAC.		4			
Ans	41.8 degrees, 138.4 degrees						
2000 P2	9.	The height, H metres, of the tide-mark in a harbour is given by the formula $H=14+3\cos(30n)^{\circ}$ where n is the number of hours after midnight.					
		(a) Find the height of the tide-mark at 2 am.	2				
		(b) When, after midnight, is the first time that the height of the tide-mark is 12.5 metres?	3				
Ans	(a) 15	.5m (b) 4am or 0400hours					