

Distance between 2 points

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$Mid = \left[\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right]$$

<u>Terminology</u> ⁻

Median - midpoint Bisector - midpoint

$$m_1.m_2 = -1$$

Possible values for gradient

Form for finding
line equation
y - b = m(x + a)
(a,b) = point on line

Parallel lines have same gradient

om = gradient
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

 $c = y \text{ intercept } (0,c)$

For Perpendicular lines the following is true. $m_1.m_2 = -1$

$$m = tan \theta$$

Double Angle Formulae

sin2A = 2sinAcosA

 $\cos 2A = 2\cos^2 A - 1$

 $= 1 - 2\sin^2 A$

 $= \cos^2 A - \sin^2 A$

Addition Formulae

$$sin(A \pm B) = sinAcosB \pm cosAsinB$$

$$cos(A \pm B) = cosAcosB \mp sinAsinB$$

The exact value of sinx

Trig Formulae and Trig equations

$$sinx = 2sin(x/2)cos(x/2)$$

$$\sin x = 2 \left(\frac{1}{4} + \sqrt{4^2 - 1^2} \right)$$

$$\sin x = \frac{1}{2} + 2\sqrt{15}$$

$$\int 3\cos^2 x - 5\cos x - 2 = 0$$

Let
$$p = \cos x + 3p^2 - 5p - 2 = 0$$

$$(3p + 1)(p - 2) = 0$$

$$p = cosx = 1/3$$
 $cosx = 2$

$$x = \cos^{-1}(1/3)$$
 $x = no \, sol^n$

180°

$$x = 109.5^{\circ}$$
 and 250.5%

$$\frac{-6\sqrt{x^5}}{\sqrt[4]{x^5}} = \frac{1}{x^{\frac{5}{6}}}$$

$$x^{\frac{1}{2}} \cdot x^{\frac{1}{4}} = x^{\frac{3}{4}}$$

$$\frac{x^{\frac{1}{3}}}{x^{-\frac{2}{3}}} = x$$

Format for differentiating

Surds
$$\sqrt[n]{x^m} = x^{\frac{m}{n}}$$

$$\frac{1}{x^m} \cdot x^n = x^{(m+n)} \qquad \frac{x^m}{x^n} = x^{(m-n)}$$

$$\sqrt[5]{x^{-2}} = \left(x^{-\frac{2}{5}}\right) = \frac{1}{x^{\frac{2}{5}}}$$

Basics before Differentiation

Division

$$\frac{1}{2} \div \frac{4}{5}$$

$$\frac{1}{2} \times \frac{5}{4} = \frac{5}{8}$$

Adding

$$\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

Working with fractions

$$\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

$$\frac{1}{2} \times \frac{3}{5} = \frac{3}{10}$$

$$x^{\frac{1}{2}} \cdot x^{\frac{1}{4}} = x^{\frac{3}{4}}$$

$$\frac{x^{\frac{1}{3}}}{x^{-\frac{2}{3}}} = x$$

Format for integration

$$\sqrt[3]{x} = x^{\frac{1}{3}}$$

Surds

$$\sqrt[n]{x^m} = x^{\frac{m}{n}}$$

$$\frac{1}{x^m} \cdot x^n = x^{(m+n)} \qquad \frac{x^m}{x^n} = x^{(m-n)}$$

 $\sqrt[5]{x^{-2}} = \left(x^{-\frac{2}{5}}\right) = \frac{1}{x^{\frac{2}{5}}}$

Basics before Integration

Working with

Division

$$\frac{1}{2} \div \frac{4}{5}$$

$$\frac{1}{2} \times \frac{5}{4} = \frac{5}{8}$$

Adding

$$\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

fractions

Subtracting

$$\frac{1}{2}$$
 $\frac{1}{3}$ $=$ $\frac{1}{6}$

$$\frac{1}{2} \times \frac{3}{5} = \frac{3}{10}$$

Leibniz Notation $\frac{dy}{dx} = f'(x)$ Equation of tangent line

Straight Line Theory

f'(x)=0 Stationary Pts Max. / Mini Pts Inflection Pt

Graphs f'(x)=0

Differentiation° of Polynomials

Gradient at a point

Derivative = gradient _ = rate of change

$$f(x) = x^{\frac{1}{2}} (2x - 1)$$

$$f(x) = 2x^{\frac{3}{2}} - x^{\frac{1}{2}}$$

$$f'(x) = 3x^{\frac{1}{2}} - \frac{1}{2}x^{\frac{-1}{2}}$$

$$f'(x) = 3x^{\frac{1}{2}} - \frac{1}{2\sqrt{x}}$$

$$f(x) = ax^n$$

then $f'(x) = anx^{n-1}$

$$f(x) = \frac{2}{3\sqrt[4]{x^5}}$$

$$f(x) = \frac{2x^{-\frac{5}{4}}}{3}$$

$$f'(x) = \frac{-\frac{5}{2}x^{-\frac{1}{4}}}{3} = \frac{-5}{6\sqrt[4]{x}}$$

Remember to change sign to + if area is below axis.

Remember to work out separately the area above and below the x-axis.

Finding where curve and line intersect f(x)=g(x) gives the limits a and b,

Area between 2 curves

Integration is the process of finding the AREA under a curve and the x-axis

$$I = \int x^{\frac{1}{2}} \left(2x - 1\right) dx$$

$$I = \int \left(2x^{\frac{3}{2}} - x^{\frac{1}{2}}\right) dx$$

$$I = \frac{4}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{3}{2}} + C$$

Integration of Polyngmials

IF
$$f'(x) = ax^n$$

Then I =
$$f(x) = \frac{ax^{n+1}}{n+1}$$

$$I = \int_{1}^{1} \frac{1}{2\sqrt{x}} dx$$

$$I = \int_{1}^{2} \frac{x^{-\frac{1}{2}}}{2} dx$$

$$I = \left[x^{\frac{1}{2}}\right]_{1}^{2}$$

$$= \sqrt{2} - 1$$

Used for intersection problems between circles and lines Quadratic Theory Discriminant

 $b^2 - 4ac < 0$

NO intersection

 $b^2 - 4ac > 0$

2 pts of intersection

Factorisation

 $b^2 - 4ac = 0$ line is a tangent

Straight line Theory

Two circles touch internally if the distance

$$C_1C_2 = (r_2 - r_1)$$

Perpendicular equation $m_1 \times m_2 = -1$

Two circles touch externally if the distance $C_1C_2 = (r_1 + r_2)$

The

Centre (0,0)

Distance formula

$$C_1C_2 = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$$

Addition
$$\overrightarrow{PQ} + \underline{a} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} u_1 + a_1 \\ u_2 + a_2 \\ u_3 + a_3 \end{pmatrix}$$
 same for subtraction $\underline{a} \cdot \underline{b} = a_1 \underline{b}_1 + a_2 \underline{b}_2 + a_3 \underline{b}_3 = 0$

2 vectors perpendicular if $\underline{a} \cdot \underline{b} = a_1 \underline{b}_1 + a_2 \underline{b}_2 + a_3 \underline{b}_3$

Magnitude $\underline{a} = \sqrt{a_1 + a_2 + a_3}$
 $\underline{a} \cdot \underline{b} = \underline{a}_1 \underline{b}_1 + a_2 \underline{b}_2 + a_3 \underline{b}_3$

Basic properties $\underline{a} \cdot \underline{b} = \underline{a}_1 \underline{b}_1 = \underline{a}_1 \underline{b}_2 = \underline{a}_1 \underline{b}_1 = \underline{a}_1 \underline{b}_2 = \underline{a}_1 = \underline{$

magnitude & direction

Unit vector form $\underline{a} = a_1 \underline{i} + a_2 \underline{j} + a_3 \underline{k}$

$$\underline{a} \cdot (\underline{b} + \underline{c}) = \underline{a} \cdot \underline{b} + \underline{a} \cdot \underline{c}$$

$$|\underline{a}\cdot\underline{b}=\underline{b}\cdot\underline{a}|$$

properties

B • • •

Points A, B and C are said to be Collinear if

$$\overrightarrow{AB} - k\overrightarrow{BC}$$

B is a point in common.

Tail to tail

$$\cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$$

Vector Theory. •

Magnitude &

Direction

Angle between two vectors

Section formula

$$\underline{b} = \frac{n}{m+n}\underline{a} + \frac{m}{m+n}\underline{c}$$