Higher: Integration

Revision

_
\mathcal{L}
∞
8
(V)

- Find $\int 4\sin(2x+3) dx$.
 - $-4\cos(2x+3)+c$
 - $-2\cos(2x+3)+c$
 - $4\cos(2x+3)+c$
 - $8\cos(2x+3)+c$

Ans

- В
 - The parabola shown in the diagram has equation $v = 32 - 2x^2$.

The shaded area lies between the lines y = 14and y = 24.

Calculate the shaded area.

8

2

- $50\frac{2}{3}$ Ans
- 2007 PI
- The diagram shows a sketch of the graph of $y = x^3 - 4x^2 + x + 6$.
 - (a) Show that the graph cuts the x-axis at (3, 0).
 - (b) Hence or otherwise find the coordinates of A.
 - (c) Find the shaded area.

3

5

1

(a) To cut the x-axis, y = 0. So

$$0 = x^3 - 4x^2 + x + 6$$

= $(x - 3)(x^2 - x - 2)$
= $(x - 3)(x - 2)(x + 1)$

Ans

So graph cuts x-axis at x = -1, 3, 2.

- (b) (2,0)
- (c) $\frac{22}{3}$

The shape of the solar roof can be represented on the coordinate plane as the shaded area bounded by the functions $f(x) = \frac{1}{4}(-x^2 - 5x)$, $g(x) = \frac{1}{12}(x^2 - 5x)$ and the lines x = -5, x = 5 and y = -6.

- (a) Find the area of the solar roof.
- (b) Ten square units of solar cells generate a maximum of 1 kilowatt.

 What is the maximum energy the solar roof can generate in kilowatts (to the nearest kilowatt)?

7

1

Ans

2002W P2

$$\int_{-5}^{0} (f(x) - (-6))dx + \int_{0}^{5} (g(x) - (-6))dx$$

(b) 6 kilowatts

 $63\frac{17}{36}$

- (a) (i) Find the x-coordinates of the points on the curves where the gradients are equal.
 - (ii) By considering the corresponding y-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).

4

1

5

(b) The point A is (-1, 12) and B is (3, -8). Find the area enclosed between the two curves.

(a) (i) $x = \frac{1}{3}$ and x = 3

(ii) parallel and coincident

(b) $21\frac{1}{3}$

Ans

	(a) $f(g(x)) = x^2 - 1$, $g(f(x)) = (x - 1)^2$	
	(b) $h(x) = x^2 - 1 + x^2 - 2x + 1 = 2x^2 - 2x$	
Ans	$(1,0) \dot{x}$	
	(c) $Area = \iint_0^1 (2x^2 - 2x) dx = \frac{1}{3}$	
Specimen 2 PI	9. Find $\int \frac{x^2-5}{x\sqrt{x}}dx$.	4
Ans	$\int \left(x^{\frac{1}{2}} - 5x^{-\frac{3}{2}}\right) dx = \frac{2}{3}x^{\frac{3}{2}} + 10x^{-\frac{1}{2}} + C$	
Specimen I PI	7. Find the value of $\int_{1}^{2} \frac{u^{2}+2}{2u^{2}} du$.	5
Ans	1	

- (a) Find the equation of the tangent at A.
- (b) Hence find the coordinates of B.
- (c) Find the area of the shaded part which represents the land bounded by the river and the road.

3

4

3

$$(a) \quad y = -5x - 3$$

Ans
$$(b)$$
 B = $(-1,2)$

Specimen 1 P2

(c) area =
$$1\frac{1}{3}$$