Revision

2008 PI	3.	The vectors $\mathbf{u} = \begin{pmatrix} k \\ -1 \\ 1 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 0 \\ 4 \\ k \end{pmatrix}$ are perpendicular.	
		What is the value of k ?	2
		A 0	
		B 3	
		C 4	
		D 5	
Ans	C		1
	11.	E(-2, -1, 4), $P(1, 5, 7)$ and $F(7, 17, 13)$ are three collinear points.	
		P lies between E and F.	
PI		What is the ratio in which P divides EF?	
2008 PI		A 1:1	2
2		B 1:2	
		C 1:4	
		D 1:6	
Ans	В		

2006 P1	 9. u and v are vectors given by u = (k³ 1 1 k+2) and v = (1 3k² -1), where k>0. (a) If u.v = 1, show that k³ + 3k² - k - 3 = 0. (b) Show that (k + 3) is a factor of k³ + 3k² - k - 3 and hence factorise k³ + 3k² - k - 3 fully. (c) Deduce the only possible value of k. (d) The angle between u and v is θ. Find the exact value of cos θ. 	2 5 1 3		
Ans	(a) $k^3 + 3k^2 - k - 2 = 1$ and complete (b) $(k+3)(k+1)(k-1)$ stated explicitly (c) $k = 1$ (d) $\cos \theta = \frac{1}{11}$			
2006 P2	 6. P is the point (-1, 2, -1) and Q is (3, 2, -4). (a) Write down PQ in component form. (b) Calculate the length of PQ. (c) Find the components of a unit vector which is parallel to PQ. 	1 1 1		
Ans	(a) $\overrightarrow{PQ} = \begin{pmatrix} 4\\0\\-3 \end{pmatrix}$ (b) $ \overrightarrow{PQ} = 5$ (c) $\begin{pmatrix} \frac{4}{5}\\0\\0\\\frac{3}{5} \end{pmatrix}$ or $\begin{pmatrix} -\frac{4}{5}\\0\\0\\\frac{3}{5} \end{pmatrix}$			

2003 P2	9. The diagram shows vectors \mathbf{a} and \mathbf{b} . If $ \mathbf{a} = 5$, $ \mathbf{b} = 4$ and $\mathbf{a} \cdot (\mathbf{a} + \mathbf{b}) = 36$, find the size of the acute angle θ between \mathbf{a} and \mathbf{b} .	4	
Ans	56·6°		
2002W PI	2. (a) If $\mathbf{u} = \begin{pmatrix} 1 \\ 7 \\ -2 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, write down the components of $\mathbf{u} + 3\mathbf{v}$ and $\mathbf{u} - 3\mathbf{v}$. (b) Hence, or otherwise, show that $\mathbf{u} + 3\mathbf{v}$ and $\mathbf{u} - 3\mathbf{v}$ are perpendicular.	2	
Ans	(a) • $u + 3v = \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}$ (b) proof $\begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 13 \\ 5 \end{pmatrix}$ • $(u + 3v) \cdot (u - 3v)$ $= -8 + 13 - 5 = 0$ $= 54 - 9 \times 6 = 0$		
2002W PI	11. PQRSTU is a regular hexagon of side 2 units. PQ, QR and RS represent vectors a , b and c respectively. Find the value of a .(b + c).	3	
Ans	0	1	
2002W P2	2. With reference to a suitable set of coordinate axes, A, B and C are the points (-8, 10, 20), (-2, 1, 8) and (0, -2, 4) respectively. Show that A, B and C are collinear and find the ratio AB : BC.	4	

Ans	$\overrightarrow{AB} = \begin{pmatrix} 6 \\ -9 \\ -12 \end{pmatrix} \mathbf{or} \ \overrightarrow{BC} = \begin{pmatrix} 2 \\ -3 \\ -4 \end{pmatrix} \mathbf{or} \ \overrightarrow{AC} = \begin{pmatrix} 8 \\ -12 \\ -16 \end{pmatrix}$ e.g. $\overrightarrow{AB} = 3\overrightarrow{BC} \begin{pmatrix} \mathbf{or} \begin{pmatrix} 6 \\ -9 \\ -12 \end{pmatrix} = 3 \begin{pmatrix} 2 \\ -3 \\ -4 \end{pmatrix}$ e.g. \overrightarrow{AB} , $\overrightarrow{3BC}$ have common direction, B common pt. so A, B, C collinear $AB: BC = 3:1$
2002 PI	2. The point Q divides the line joining P(-1, -1, 0) to R(5, 2, -3) in the ratio 2:1. Find the coordinates of Q.
Ans	(3, 1, -2)
2002 P2	2. The diagram shows a square-based pyramid of height 8 units. Square OABC has a side length of 6 units. The coordinates of A and D are (6, 0, 0) and (3, 3, 8). C lies on the y-axis. (a) Write down the coordinates of B. (b) Determine the components of DA and DB. (c) Calculate the size of angle ADB.
Ans	(a) $(6, 6, 0)$ (b) $\overrightarrow{DA} = \begin{pmatrix} 3 \\ -3 \\ -8 \end{pmatrix} \xrightarrow{DB} = \begin{pmatrix} 3 \\ 3 \\ -8 \end{pmatrix}$ (c) $\cos A \hat{DB} = \frac{\overrightarrow{DA} \cdot \overrightarrow{DB}}{ \overrightarrow{DA} \overrightarrow{DB} }$ 38.7°

3

3

(b) A further T-rod is placed such that D has coordinates (1, -4, 4).

Show that DB is perpendicular to

(a) the road ABC is straight

AB.

Ans

(b)
$$\overrightarrow{BD} = \begin{bmatrix} 3 \\ -3 \\ 3 \end{bmatrix}$$

 $\overrightarrow{AB}.\overrightarrow{BD} = 0$
 $\overrightarrow{AB}.\overrightarrow{BD} = 18 - 27 + 9 = 0$

2. OABCEFGH is a cuboid.

With axes as shown, O is the origin and the coordinates of A, H, G and L are (4, 0, 0), (0, 0, 5), (0, 6, 5) and (3, 6, 5) respectively.

K lies two thirds of the way along HG, (ie HK:KG = 2:1).

- (a) Determine the coordinates of K.
- (b) Write down the components of AK and AL.
- (c) Calculate the size of angle KAL.

5

2

$$\overrightarrow{HG} = \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} \Rightarrow \overrightarrow{HK} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} \Rightarrow K = (0,4,5)$$

Ans

$$\overrightarrow{AK} = \begin{pmatrix} -4 \\ 4 \\ 5 \end{pmatrix}, \qquad \overrightarrow{AL} = \begin{pmatrix} -1 \\ 6 \\ 5 \end{pmatrix}$$

(c)
$$\cos K\hat{A}L = \frac{4+24+25}{\sqrt{57\sqrt{62}}}$$

$$\hat{KAL} = 26 \cdot 9^{\circ}$$

$$\overrightarrow{AV} = \mathbf{p}, \ \overrightarrow{AD} = \mathbf{q} \text{ and } \overrightarrow{AB} = \mathbf{r}.$$

- (a) (i) Evaluate $\boldsymbol{p}.\boldsymbol{q}$.
 - Hence evaluate p.(q + r). (ii)
- (b) (i) Express CV in terms of p, q and r.
 - (ii) Hence show that angle CVA is 90°.

3

4

Ans $(a) \quad (i) \quad \mathbf{p} - \mathbf{q} - \mathbf{r}$ $(ii) \quad \overrightarrow{CV} \cdot \overrightarrow{AV} = \mathbf{p} \cdot (\mathbf{p} - \mathbf{q} - \mathbf{r})$ $= \mathbf{p} \cdot \mathbf{p} - \mathbf{p} \cdot (\mathbf{q} + \mathbf{r})$ = 0