St Ninian's High School

MATHS Higher Course CHECKLIST

•	I understand this part of the course =	
•	I am unsure of this part of the course = \square	
	E	
Name_	ClassTeacher	

 \wedge

I do not understand this part of the course =

Chapter 1 - Area and Volume

1. Revision (Conversion litres - millilitres, Area of Rectangle / Square. Surface Area etc.)

2. The Area of a triangle. (A =
$$\frac{1}{2}b$$
 as x height

- 3. The Area of a Parallelogram (A = Base x Altitude
- 4. The Rhombus and Kite (Area of a Kite = Half the product of the diagonals, A =

add together.

- 5. The trapezium ($A = \frac{1}{2}h(a+b)$)
- 6. The Area of Composite Shapes (Split shape up into smaller shapes. Calculate individual areas and then \geq)
- 7. The Volume and Surface Area of a Prism. (Volume = Cross Section Area x Length or Height. Surface

Area = Area of faces added together.

μWI

Pupil Signature

Chapter 2 - Money

Parental Signature

- 1. Money Calculations (£566.23 + £432.56 etc)
- Wages and Salaries (Weekly wage = £200, How much does this person earn in a month? How much does this person earn in a year? £7 per hour, How much do you earn in one week if you work 30 hours etc)
- 3. Time Sheets and Overtime (Overtime Time and a half, Double Time, time and a quarter.
- Piecework and Commission (Piecework Person gets paid £20 for one maths lesson, how much for 10 lessons? Commission – Sales person get 3% of the sales he makes. etc)
- Payslips (Gross pay = Total amount earned before any deductions, Deductions = Tax, National Insurance, Pension, Net Pay = Total pay received after deductions)
- 6. National Insurance Contributions (This is a government tax on earnings, intended to contribute towards unemployment, ill health and retirement payments.)
- 7. Income Tax (Tax allowance = Amount of money the government is not allowed to tax. Tax is calculated by taking your annual salary and subtracting your allowance. This is the amount that will be taxed.
- 8. Bank and Building Society Accounts (Check book, cash card, credit card, bank statement.
- 9. Savings and Interest (Simple Interest eg £500 is deposited in a bank for 3 years. Work out interest gained for 1 year and multiply by 3. Compound Interest – The interest carries over onto the next year, thus building up in the bank account over the required term.)
- 10. Appreciation and Depreciation (Appreciation means an increase in value, Depreciation means a decrease in value. eg Appreciation House is worth £120000 and in 3 years it is worth £145000, How much has it appreciated by? Depreciation A Car is worth £6000, find out how much it has depreciated by in 3 years if the rate is 8%.)

e E

Chapter 3 – Similarity

Pupil Signature_____

- 1. Representative Fractions (1cm Represents 10m, 1cm:1000cm or 1:1000)
- 2. Scale Drawings (Choose a suitable scale, Start all Movement points with a north line, Make sure all measurements are accurate.
- 3. Working out Scales (2cm : 5 km, therefore 2cm : 500000cm = 1 : 250000)
- 4. Similar Triangles

 $(Enlargement Scale Factor = \frac{L \arg e _Measurement}{Small _Measurement})$ $(Reduction Scale Factor = \frac{Small _Measurement}{L \arg e _Measurement})$

5. Other Similar Triangles (The Corresponding Sides are

in proportion)

- 6. Ratios of Areas (The scale factor for the area is the square of the scale factor for the length)
- 7. Surface Areas of similar solids (If two solids are similar, then the scale factor for the surface area is the square of the scale factor for the length)
- 8. Volumes of Similar Solids (The scale factor for volume is the cube of the scale factor for length)

Chapter 4 – Formulae

- 1. Review of BODMAS, removing brackets, Squaring numbers, substitution.(eg 2(x + 1) = 2x + 2, -3y = 33)
- 2. Using Formulae (Substituting various answers into formulae eg A = $\sqrt{\frac{hw}{3600}}$, where h = 1.8, w = 70kg)
- 3. Making Formulae (I buy a CD £m and Sell it for £n, making a profit £p. Formula would be P = n m)
- 4. Change the subject of the Formula (A = πr^2 , Change subject to r, r = $\sqrt{\frac{A}{\pi}}$)
- 5. Understanding Formulae ($C = \pi d$, What happens if we double d?

Pupil Signature_

Parental Signature

Chapter 5 - Equations and Inequations

- 1. Revision (Solving Equations, Foil, Lowest Common Multiple)
- 2. Solving Harder Equations ($x^2 7 = (x-1)(x-2)$)
- 3. Equations with fractions (Solve $\frac{y}{5} = \frac{1}{3}$)
- 4. Inequalities $\begin{pmatrix} \langle \leq \\ \rangle \rangle \geq \end{pmatrix}$
- 5. Solving Inequalities (Can you solve this Equation? 10m - 3 > 2x + 9, Remember \times/\div by a -ve number will flip the symbol round the opposite way.)

Pupil Signature____

Chapter 6 – Algebraic Fractions

- 1. Revision of Fractions (Adding, Subtracting, Multiplying, Dividing Fractions)
- 2. Equivalent Fractions (Find three fractions equivalent to $\frac{3}{5} = \frac{3x}{5x} = \frac{3(x+1)}{5(x+1)}$)
- 3. Multiplying Fractions ($\frac{x}{y} \times \frac{3}{4} = \frac{3 \times x}{y \times 4} = \frac{3x}{4y}$)

4. Dividing Fractions
$$\left(\frac{2}{3} \div \frac{3}{x} = \frac{2}{3} \times \frac{x}{3} = \frac{2 \times x}{3 \times 3} = \frac{2x}{9}\right)$$

5. Adding Fractions $\left(\frac{3}{4} + \frac{5}{7} = \frac{3 \times 7}{4 \times 7} + \frac{5 \times 4}{7 \times 4}\right)$

6. Subtracting Fractions

$$\left(\frac{7}{8} - \frac{3}{7} = \frac{7 \times 7}{8 \times 7} - \frac{3 \times 8}{7 \times 8} = \frac{49}{56} - \frac{24}{56} = \frac{25}{56}\right)$$

Pupil Signature_____

- 3. Gradient (Is the measure of how steep a slope is. $M = \frac{Vertical _Height}{Horizontal _Dis \tan ce}$
- 4. Gradients on a coordinate grid (m = $\frac{y_2 y_1}{x_2 x_1}$)
- 5. The Equation of a Line (y = mx + c, m = Gradient, c = y intercept)
- 6. The best fitting line (Scatter graph containing a best fitting line)

Chapter 8 - Quadratic Equations

Pupil Signature

- 1. Revision (Solving Equations, Factorising, Difference of two squares, Quadratics)
- 2. Introducing Quadratic functions / Equations

- Using Factors to solve Quadratic Equations
 (x²-4x=0, x (x-4)=0, therefore the solutions are x = 0 and x = 4)
- 4. More Quadratic equations : Trinomials $(x^{2} + 5x + 6 = 0, (x + 3)(x + 2) = 0, (x + 3) = 0, (x + 2) = 0$, Therefore x = -3, x = -2
- 5. Manipulation ($(x + 4)^2 = 36$)
- 6. Problems involving quadratic equations (

Use Pythagoras to show that $x^2 + x - 12 = 0$)

7. A formula for solving quadratics $\sqrt{2}$

$$\left(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\right)$$

8. Iteration (Find a solution between two numbers. Using trial and error)

Chapter 9 - Surds and Indices

Pupil Signature

- 1. Indices Multiplication $(x^2 \times x^3 = x^{2+3} = x^5)$
- 2. Indices Division ($x^8 \div x^3 = x^{8-3} = x^5$)
- 3. Negative Indices $(\frac{1}{x} = x^{-1}, 4x^{-3} = \frac{4}{x^3})$

4. Powers of powers
$$((x^2)^4 = x^{2\times 4} = x^8)$$

5. Fractional Indices ($\sqrt{x} = x^{\frac{1}{2}}$)

6. Surds
$$(\sqrt{ab} = \sqrt{a} \times \sqrt{b})$$

- 7. Further Simplification $\left(\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}\right)$
- 8. Rationalising the denominator
 - $\left(\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{9}} = \frac{\sqrt{3}}{3}\right)$

1	
2	
3	
4	
5	
6	
7	
8	

Chapter 10 - Functions

Pupil Signature_

- 1. Illustrating a function (O-O)
- 2. Notation (f(x) = x + 4, Find (f6) = 6 + 4 = 10)
- 3. Graphs of linear and quadratic functions (
- 4. Sketching Quadratic functions (4 steps (1) Find where (f(x) = 0, (2) Find the equation of its axis of symmetry (3) Find Turning point – Max or Min (4) Find where the curve cuts the y axis, x = 0.)
- 5. The function $f(x) = \frac{a}{x}, x \neq 0$ (The function $\frac{a}{x}$ is the

simplest form of a reciprocal function.

6. The function $f(x) = a^{x}$, for a = 1, 2, 3...

1. Revision (Soh Cah Toa)

2. Exact Values

	0 0	30 ^o	45 ⁰	60 ⁰	90 ^o
Sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
Cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
Tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	

3. Sines, Cosines and Tangents of angles $> 90^{\circ}$

90 < A < 180	0 < A < 90
2^{nd} Quadrant	1 st Quadrant
$\frac{180 < A < 270}{3^{rd}}$ Quadrant	270 < A < 360 4 th Quadrant

- 4. Trig Functions and their graphs (
- 5. Solving Trigonometric Equations ($\sin x^{o} = 0.2$, Using Quadrants shown above)

6. Related Ratios (
$$\frac{SinA}{CosA} = TanA$$
)

μη

E

Chapter 12 – Trigonometry and triangle calculations

Pupil Signature_____

- 1. The Sine Rule Calculating Lengths and Angles $\left(\frac{a}{SinA} = \frac{b}{SinB} = \frac{c}{SinC}\right)$
- 2. The Cosine Rule Calculating Lengths and Angles $(a^2 = b^2 + c^2 - 2bcCosA, \text{ Cos A} = \frac{b^2 + c^2 - a^2}{2bc})$
- 3. The Area of a Triangle ($A = \frac{1}{2} ab Sin C$)
- 4. Which Formula to use? (3 sides Cosine rule, 2 sides + angle between Cosine Rule, 2 Sides + angle <u>not</u> between Sin Rule, 1 side and 2 angles Sin Rule)

Pupil Signature_