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MATHEMATICS 1 (AH)

Introduction

These support materials for Mathematics were developed as part of the Higher Still
Development Programme in response to needs identified at needs analysis meetings
and national seminars.

Advice on learning and teaching may be found in Achievement for All (SOEID 1996),
Effective Learning and Teaching in Mathematics (SOEID 1993), Improving
Mathematics (SEED 1999) and in the Mathematics Subject Guide.

These materials were originally issued to schools to support CSYS Mathematics.
They have now been updated and matched to the Arrangements for Advanced Higher
Mathematics to be issued as part of the support material being provided for
mathematics.

It should be noted that not all of the content of Mathematics 1 (AH) is covered by this
support material. The outcomes covered are Algebra, Differentiation, Integration and
Properties of Functions. At the start of each outcome a list of the content covered by
the material has been included.

Mathematics: Mathematics 1, 2 and 3 (Supplementary Pack) (AH) 5



MATHEMATICS 1 (AH)

CONTENT

Algebra
1.1.6 express a proper rational function as a sum of partial fractions (denominator of
degree at most 3 and easily factorised)

include cases where an improper rational function is reduced to a
polynomial and a proper rational function by division or otherwise [A/B]

Comment

The denominator may include a repeated linear factor or an irreducible quadratic
factor. This is also required for integration of rational functions and useful for graph
sketching where asymptotes are present.

The content within Algebra which, refers to the binomial theorem and corresponding

notation, is not covered within this support material, i.e. 1.1.1, 1.1.2, 1.1.3, 1.1.4 and
1.1.5.
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MATHEMATICS 1 (AH): ALGEBRA
Rational functions and partial fractions

x 1
+

xt+1 x-1

Suppose you are given

We know how to express this as a single rational function

x 1 =D +1*+) 2P —xtxt bl 20 —x+l 207 —x ]
41 x-1 (x*+1D{x -1 (2 +Dx-1) G +Dk-1) x*—x*+x-1
. ) . 1
We call an expression such as the above, a rational function, zx . and | the
x“+ X —

corresponding partial fractions.

It is useful to be able to reverse the above process i.e. starting with the rational
function, to rewrite it as a sum of partial fractions.

5 x) , where P(x) and D{x) are polynomials.
X

Step 1 - We must ensure that the degree of P{x) < the degree of D(x) by dividing if
necessary.
Step 2 - Factorise D(x) . Each of the factors of D(x) will become the denominator of

a partial fraction.
(The corresponding numerator of the partial fractions will be of a degree less than that
of the denominator.)

Suppose our rational function is

Example 1
x+16

Express ——————— as partial fractions
(2x —3)(x+2)

; x+16 4 N
2x=3Mx+2) 2x-3 x+2

Le , where 4 and B are constants

Thenx+ 16 =A(x+2) + B2x-3)
Put x =-2 gives 14=-7B=B=-2

Putx = —% gives 174 =314=4=5

x+16 5 2
2x-3x+2) 2x—-3 x+2

Hence
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Example 2
27 +7x" —2x -2

> as partial fractions.
2x°+x-6

Express

Here the degree of the numerator is > the degree of the denominator and so we must
divide out.

257 +7x% - 2x -2 x+16 £+3
2 :X+3+ 2 2 3 2
2" +x—-6 2x°+x-06 2x +x—6)2x +7x°=-2x-2
2x +x° —6x
6x% +4x -2
6x° +3x—18
x+16
5
But 2Jc+16 _ B 2
2x°+x-16 2x-3 x+2
’ fo2x-2 5 2
Hencezx +7:x al =x+3+ -
2x°+x—-6 2x -3 x+2
Examples for class
Express as partial fractions
_ Q_
() 5x+1 5 4x-19 3 : 14x @) X :
(x+5)(x—-3) x-D(x-2) x“4+x-12 1+x—6x
2_ _ 3__2 _
(3) x“—6x—7 (6).762 x—13
(x—D{x-2)(x+3) x°=2x-3
Answers
3 2 15 11 8 6 5 3
(1) + (2) —— (3) + (4) +
x+5 x-3 x-1 x-2 x+4 x-3 3x+1 1-2x
1
(5) SN + ! 6) x+2+ ? +
x=1 x-2 x+3 20x=3) 2&x+D
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Example 3
2x° —5x+10
(x+2){x* +x+5)

Express in partial fractions.

x% 4 x + 5 has no real factors (irreducible quadratic), and so we shall have two
fractions with denominators (x + 2) and x°+x +5.

The numerator of the first will be a constant as before but the numerator of the second
might be of the first degree in x. Hence,

2x% —5x+10 s N Bx+C

. = . where A, B, C are constants.
x+2)(x*+x+5 x+2 x“+x+5

let

Then 2x% =5x+10=Ax* +x+ 5+ (Bx+C)(x +2)

Put x =-2 gives 28=74 = A4 =4

Put x =0 gives 10=54+2C = 2C=10-20=-10=C=-5

Put x =1 gives 7=74+3(B+C)=>7=28+3(B-5) = 3(B-5) =-21
=B-5=-7
= B=-2

2x* —5x+10 4 (—2x —5) 4 2x+5
Hence s = +— = -
(x+2M{x°+x+5) x+2 x*+x+5 x+2 x"+x+5

N.B. The number of constants required = the degree of the denominator of the rational
function.

Example 4
7x—10
(GBx—4)(x—1)°

Express as partial fractions,

7x—10 A B C
+ +

Let - = 7
Bx—-A(x-1 3x—-4 x-1 (x-1

where A, B, C are constants.

Then 7x-10=AG-1)° +BGx -4 x-D+CGx—4)

Put x=1 gives ~3=-C=C =3

Put x =4 gives 2 =34 =>4=-6

Put x =0 gives —10=A+4B—-4C 4B =-10+6+12=8=B8=2

7x—10 -6 2 3
= + +
GxdHx-1° 3x-4 x-1 (x-1°

Hence
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Examples for class
Express as partial fractions:

x+8c+1
2-x)1+x+x%)

(1)

xirdx+7
(x +2){x+3)°

Answers
3 2x -1
+ 2
2—x x"+x+1

(1)

3 2 4

4 _ _
()x+2 +3 (x+3)°

2 2 _
) 3x +x4;l 3) X 2x+102
x{x+1 (x+2Xx—-1
3x—x-2 © 3x% +92x
1+ 2x){(x+2)° (x* +1){x +6)
1,23 gz 1,3
x x+1 (x+1 x+2 x-1 (x=1)
_ -12
5) 3 N 7 B 4 : 6 1 15ic+2
2x+1 x+2 (x+2) x+6  x°+1
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MATHEMATICS 1 (AH)

CONTENT

Differentiation

1.2.1 know the meaning of the terms limit, derivative, differentiable at a point,
differentiable on an interval, derived function, second derivative

dy d°
1.2.2 use the notation: f'(x),f”(x),—)i,—%
dx dx

1.2.3 recall the derivatives of x® (¢ rational)}, sin x and cos x

1.2.4 know and use the rules for differentiating linear sums, products, quotients and
composition of functions:

(f () +g(x) = flx) +g'(x)

(kf (x))' = &f '(x) , where £ is a constant

the chain rule: (f (g(x))' = f'(g(x).g"(x)

the product rule: (f (x).g(x)) = f'(x).g &) + f (x) g"(x)
FY gk -Fk)g'x)

gx) ) (g (x)*

the quotient rule: [

differentiate given functions which require more than one application of
one or more of the chain rule, product rule and the quotient ruie [A/B]

1.2.5 know
the derivative of tan x
the definitions and derivatives of sec x, cosec x and cot x
the derivatives of ¢* (expx) and Inx

1.2.6 know the definition f'(x) :}}ngf (th)z —/ )

d'y

B

1.2.7 know the definition of higher derivatives f" (x),

The content listed below is not covered in this support material:

1.2.8 Apply differentiation to:
a) rectilinear motion
b) extrema of functions: the maximum and minimum values of a continuous
function f defined on a closed interval [a, »] can occur at stationary points, end
points or points where /7 is not defined {A/B]
¢} optimisation problems
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MATHEMATICS 1 (AH) : DIFFERENTIATION
General rules of differentiation

The following derivatives have already been met with Higher work.

2 e+ ) =nalax+p)""
dx

isin(c;cx) =g cos (ax)

dx

d )
—coslax) = —asin (ax)

dx

Also the following rule:-

Chain Rule

If y is a function of » and u is a function of x, then if y is now regarded as a function
of x.

d _dy du
dx du dx
Example 1

Differentiate y =sin5x

Let u =5x, then y =sinu

d

—u—:S, @i:cosuzcosfm

dx du

Then dl:dl.d—u=5c055x
dx  du dx

This process should normally be done mentally by “peeling” method.

Example 2
Differentiate cos” x
Let f(x) =cos® x = (cosx)’

Then f'(x) = 4(cosx)’. (~sinx) =—4sinxcos’ x.

Example 3

Differentiate (2x* —3)’

Let f{x) = (2x* -3}’

Then f'(x) =7(2x” =3)°.4x = 28x(2x* - 3)°
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Examples for class.

Differentiate: (1) v2x+3 (2) (4—5x)% (3) 21 @ (x-1°
—x
1 5 L 2 4 a
5y ———— (6 2x*—x)7 (7)) ax*-bH)" (8)

(3x-5)° . vax+b

(9) 2sinx+3cosx  (10) sin3x {11) cos3x  (12) cos(2x+1)

(13) sin(4x —7) (14) sin®x  (15) cos®x  (16) sin® 3x

Note: The derivative of a function f can either be written as

, df d
(1) f'(x) or (2) o or (3) dx(f(x))

Answers

-0 @ 30+ L)e-1)?
X X

1) 2x+37% () —%4—5;0% 3)

Moo=

(5) —6(Gx —5)°  (6) —%(4x—1)(2x2—x)_% (7) Saxlax® - b)’

(8) —%az(ax+b)"% (9) 2cosx - 3sinx  (10) 3cos 3x (11) -5sinx

(12) -2sin(Zx + 1)  (13) 4cos(4x -7) (14) 2sinx cosx

(15) 3cosxsinx  (16) 6sin 3x cos 3x

Definitions: New trigonometric functions
In order to extend the calculus, we require to define three new functions:

i
sech = ;  cosecH = — cotd =
cosH sind tan®

We also have cotb = C?Se ,

sinf

sec’® =1+tan’0
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Examples

1 1
1) sect = =—-=2; 2) coseck=——=-=1

X 1 | J—
3) coti.sing =

4) Show that cosec®® +sec?0 = cosec’® sec’0

1 1 cos®6 +sinH

cosec’® +sec’d = — = —— -

sin“8 cos“0 sin“8 cos” 0

I R T
sin?0 cos’®  sin’0 cos?O

= cosec’0.sec’0 =R.H.S.

Thus identity is proved.

Examples for class
1. Evaluate
(1) cosec? ™ —tan” & (2) cos*.cosec® E.cosec” &
3 4] 3 4 4
(3) sinZ.sin% +cosZ.sin%.tan% (4) (I+sinI)(1-cos?)
2. Evaluate
cosec ™
(1) cos®.cosec” % (2) sec” &——0=°
) sin {‘1
(3) cosec’L.sinZ—sin’ % —gin®< (4) (secZ+coti)(cosect —tan)
3. Simplify
(1) cotB sind (2) cotO sec (3) sect
cosecH
) 0 i
(4) sin® secB (5) cosOcosectH (6) cos $in0

sec  cosecO
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Answers

L2 @2 & L @

3 J2

21 @0 () —j ) 1

o | =

3.(1) cos9 (2) (3) tan® (4)tan® (5) cotH (6) 1

sinB

Differentiation of a product of functions.

d d d
If  and v are functions of x, then — {u.v) =u & + v—u.
dx dx dx

Proof:
Let f{x) =ulx).vix)
Then f(x+h)=ulx+A)vix+h)
and  flc+h)— () =ulx+a)vix+h) —ulx)vix)
=ulx+h).vix+h) —v)}+vix) {ulx+ha) —ulx)}

Hence
£(x) :Pngf(x +h}:—f(x) :lingu(x+h)-(l)(x+h)—v(x)jt+v(x)_{u(x+h)_u(x)}
:Lirgu(XJFh)_{V(x%‘h;*V(x)}+Li]%v(x).{u(x+h;—u(x)}
=u(x)@(x)+v(x)d—u(x)
dx dx
Example 1

Differentiate (3x* —2)(2x° + 3x)

%(314 —Cx +3x) = Bt = 2)(6x° +3) +12x7 (257 + 3x)
=42x° +45x% —12x° ~ 6

Example 2
Differentiate sinmx.cosnx

% (sinmx.cosnx) = (sin mx) (—nsinnx) + (cos ax) (m cos mx)

= —p SIN X SINAX + 7 COS MX COS X
= 11 COS MX COS AX — FI SINL #1x SN mix
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Example 3
Differentiate u.v.w , where u, v, w are functions of x.

d d dw d
—d; El.v.w]— E [(u.v).w]— u.v.? +w— (u.v)

X dx
aw dv du
=uv.—+wlu—+v.—
x dx
d du
=V — W — VW —
x dx

Examples for class
Find the derivatives of:

(1) Gx+DCx+1 (2) (P +1DEx+1) (3) (3x—5){x* +2x)

@ (x*+3)2x* -1 (3) (x> —x+D(x+1) (6) (x7 +4x+5)(x*~2)
@) 2 —x D2 +x-1D (8 (x-2)(x" +2x+4) (9) (2x* =3)3x* +x-1)
(10) vx (x? +x+1) (11) x sinx (12) sin 2x . cos 2x

(13) x* cos2x (14) x \[sinx (15) (2 +x+Dx -1
(16) (x* +4x)(3x* —x) (17) (1-cosx)(l+cosx)

(18) 2x* (Wx +2)(x -1

Answers

(1) 12x+5 (2) %x2+2x+% (3) 92+ 2¢—10 (4) &’ +10x (5) 3x°

6) 4 + 122+ 6x -8 (7) 4 +2¢  (8) 3x* (9) 24x’ + 6" —22¢ 3

(10) gx% +_§sz +%x‘yz (11) sinx +xcosx (12) -2sin” 2x + 2cos” 2x

XCOSX

2+/sinx

(16) 126> +33x* =& (17) -2sinx cosx  (18) 5x% +4x—6x”

(13) 2xcos 2x — 2x%sin 2x  (14) +/sinx + (15) 3x°
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Differentiation of a quotient of two functions

du dv
. d m i
If u and v are functions of x, then—! — | = —————
v v
Proof:
u (x) ulx+h)
=—" th =
Let f(x} 0 ,then f(x+h) e )
_ulx+h) u (x) ul+h)vix)—ub)vix+h)
f(x+h)_f(X)_v(x+h) v(x)g vix+h)vix)
Hence fl(x) - Lgrolf(x‘i‘h; _f(JC)
:]imv(x){u (x+h) —ul)—ul) v+ A —vix)}
=0 hAvix+h)v(x)
. (x){a__m_@} u (x)JLWfﬁ)__:z_(ff?l
_ P h J
=lim
h—=0 vix+4h)vix)
v (x) iu (x)—u (x)EV(X)
_ dx dx
v? (x)
Example 1
2
Differentiate xz -1
x°+1

xi+1 (x® +1)° (x*+1)°

d -1 P HD2x - -D2x 4
dx

Example 2
Differentiate cotx

d d [ cosx sinx (—sinx) — Cosx.Cosx
—(cotx) = —| — = —
dx dx | sinx sin” x

_—sin‘x—cos’x _ —(sin® x+cos’ x)

sin® x sin’ x
_ -1
sin® x
= - cosec’x
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Examples for class

Differentiate
2 2

H—— @ @ = 4 = (5 LAl

2x—1 1-3x x—2 x—4 x°—x+1

2 2

©) %T“—; (7 Lreta ® @nx ) secx

x°+x— X

sin’ x 1—cosx
(10) cosecx (11) _ (12)
1+sinx 1+cosx

N.B. — tanx =sec’ x

dx
Answers

-6 6x -2 x% —8x -2x" 42

(1) (2) (3) (4) (B5) ————

(2x—-1° (1-3x%)° (x—2)° (x —~4)° (x*—x+1°

2 .

(6) —S—j-—lz— (7) 1- iz (8) sec’x (9 sm;r (= tan x sec x)

B3x° +x-1) X CO8” x
(10) - cosx (= —cotxcosecr) (1) sinxcosx (2 +sinx) (12) 2sinx

sinx {1+sinx)® {(1+cosx)’

Example 3

Differentiate

2x

Jxf+1
2

(Vxt+1).2-(2x). ! e 2 240 41— 2x XZ"*"W

i 2x 2. xt+1 _ ' Mxt+1 1
dx ¢t g1 Wx*+1)? R 1) Vil
o
B 2(x% +1) - 2x° 3 2
(k2 +1)° (x? +1)°

Note: We could have used the product rule by taking Yoasuwv,
v
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Examples for class

Differentiate

Jx

x+1

(1)

Answers
- )
Xyt

(1)

2(x+ )¢

(2)

(2) Vx+1
x—1
(5) !

1
=D (x+1)%

—4x+3

202x% —3x+ A"

(6)

x%(1

Lxsinx —cosx)

sin® x
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Higher derivatives

Lety=6x°+3x+4 then %:12x+3

dy : . .
Here :ix)i is defined by the above equation as a function of x and so we can

differentiate this expression with respect to x.

D1
dx '\ dx

2

(v is usually written as a };
dx | dx dx
This process can be repeated to get 3
3 d4 dn
written as d ); ); ...... , Y
de’  dx dx”
2
Note: d ’: # 12
d’x
dy*®
Example 1
y=x"+ 3+ 1
Y _ 4> 1952
dx
d 2
Y =12x% +18x
dx
3
€ = 24x+18
dx
4
‘;xj’ =24
3
‘e
d’y _0
dxn

rd  4th
, 4

or y" and is called the second derivative of y.

....... , nth derivatives which can be

Example 2
v=logx
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Examples for class

(1) Write down the first and second derivatives of :

@x2G-1 M 5c? -3x* +2x%-x+1 (010x" - 4 + 5x + 2

@1 @V OVl @ 2
X X sinx +Ccosx

(2) Verify that y = x sin x is a solution of the differentiable equation

2
d
ng—{—Zx—y+(x2+2)y=0
dx

d z
(3) Show that y = cos kx satisfies the differentiable equation =+ %y = 0
dx

Answers

a’zy

3 =60x° ~ 18x + 4

(b) @i=20x3w9x2+4x—1 .
dx

2
© L -d00 —122+5; 7 . = 1206% - 24x
dx dx

@ 2= -
dx dx*®
2
(e} i lx% : dy J; = 1{/
de 2 dx 4
2
0 Y- Loy d—f——(zxﬂ) %
dx 2 dx
dy d’y .
(g) E——Bx" : 3 =12x7
2 .
(h) dy 1 ,d’y _ sinx-—cosx

dx sinx+cosx  dx® (sinx+cosx)’

(2) Proof (3) Proof
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The Exponential and Logarithmic functions

The exponential function, exp x or &'

2 3
. . . X x° x
For all finite x, we define expx = F + E + ; +... , where

nl=nn-1n-2)...3.2.1

Exp x is called the exponential function to the base e and is quite frequently denoted
by the symbol e .

Basic properties of €
. . . 1 1 1
1) Replace x by 1 in the series to obtain e =e' =1+ TR toptees 2.7182812
We usually take e = 2.72, to 3 sig figs.

2) e is an irrational number.

02
3) el =ld—F——+..=1
i 2!
x x? yz
4) ex.ey=[1+—+——+..}(1+l++...}
1 2! 12!
2 2
ISV

o2t 1 2

2 2
:1+(£+Z}+(x—+—{}i+i—}+
11 2r 1 2!

2 2
:1+(x+y) +("c tomyty )+.,.

1! 21
2
:1+(x+y)+ (x+y) +...
1 2!
:e.t+y
5) j;r—:e*’(
e

6) e swasx oo and e’ =0 as x > —o0

7) e” is always positive.
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The graph of y = €

The derivative of €

h
limé— L=y
h—0 h
2 2 3
e e Ttk
Proof: ¢ —1: : =
h h h
2
h(l+--ﬁ+k+...}
1t 2t 3!
- h
2
:1+£+-w+
2t 3!
[ LI
as b — 0,5 L 51, lim<— -1
A0 h
Theorem: 4 e’ =e¢"
dx
Proof: Let f(x)=e*, then f(x+h)=e"
Fla+hm—fl) e -et (" -1
h h h
+h) - ) g
Hencef’(x)=limf(x )f(x)zlime"{e——}:exlim(e 1]
h—0 h A—=0 h h—D h
=’
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Examples

1) _C_l_GZx — 2621

Lanx

3) ie‘““ =sec’xe
dx

d d ., ,d v x
4) —xei=x—e " +et —x=xe"+e
dx dax

5) %tan (e*) = Eecz(ex)]e" =¢”" sec’ (e¥)

Examples for class
Differentiate with respect to x:

1) (a} e (b) el (©) eﬂ
2) (@) e (b) 3_7“ () e
3) (@) xe” (b) xe ™ () xle™*

4) (a) (x+4)e” (b) e'sinx (¢) 10e”

5) (a) esinx (b) ecnsx (C) etanx
e(” 2 _4x ax 2
6) — 7) x°e 8} ¢“*sin” x
xZ
9) xexfxz 10) JCZesinzx
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Answers
D (@) 5¢% (b %e% © %x%eﬂ

2) (a) -2¢™ (b) mge% (©) 2652

3) @) (1+xe ) (1-xe* (c) 2xe™ —xe™

4) (a) (5+x)e (b) (cosx +sinx)e’ (c) 10"

5} (a) cosxe™™ (b) —sinx e (c) secir ™"
6) (—éx’% rax™ }e‘” 7V (2x + 4xd)e® 8) (asin’x + 2sin x cos x)e™
9) (1 +x—2.)cz)eHZ 10) (1 + xsin xcos ;c)ers”‘g'r

The Logarithmic Function (In x).

The logarithmic function is defined to be the inverse function of the exponential
function.

Thus y=lnx e x=e",

When the base of a logarithm is e the logarithms are called natural or Naperian
logarithms.

Basic properties.

1) lnagb=Ina+ink

1
2) In—=—1Inb
b

4) lna =P na
q

5) lne=1

6} Int=0
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Examples 1) Ine’ =3Ine=3

2) In¥e = lne% =llne =l
3 3

3 Findxif Inx=2. Inx=2cx=¢°
Examples for class
1) Find the values of (a) Ine” (b) lnl (¢) Ine

e
2) Find x in terms of e if
(@ Inx =3 (b) Inx =-2 (c}) inx=1+1n2 (d) In(lnx) =0

Answers

1) (a) 2 (b) -1 {c)

|~

x=¢" Mx=e? {c)x=2e (d) x=e

The graph of y=lnx

y=Inx
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The derivative of In x

Let y=Inx

then x =e”

and so é]E:e)’ =X
dy
dy 1 1

Hence = =—=—
de dx  x

dy

ie. -«aL(lnx) = 1
dx X

d 1
Examples: 1) —In2x=—.2=

dx 2x ;
2) — In3x =——1—.3=l
3x x
3) —Inx® =—12—.2sz
x X

B
IR
=}
T
fa—y
’+
b
M
I
SRR

hn (1+x)—1n - x)

2
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Examples for class

(b) Incosx 5) ln[

Differentiate

1) (a) InZ () Inlax?® +bx +¢)
a

2) (@) Inx® () In(x®+3)

3) xInx 4) (a) Insinx

6) In (e‘ +e "

9) Intan (ij
2

12) In {/xwl+\/'x?

14} In (cosecx + cotx)

7) In (+w!x2 +1
10) In./sinx

&) Invx?+1

13) In (secx +tan)

15) In (1 - 2cos 2x)

Answers
1 2ax +b 2 3x°
1) () — () —— 7 2) @ = (o) =
X ax” +bx+c X x +3
3) 1+inx  4) () c?sx =cotx () - = _tanx
Sinx COS X
2x et —e™” 1
i 7 —
(@a+x)a—x) e e (x> +1)"
1
8) zx 9 . _ .1 10) co'sx
x°+1 Z2sinZcoss  sinx 2s8inx
1
11) p 12) 13) secx
l+e 2Jd-D(x+1
14) cosx—1 4s8in 2x
sin x{cosx +1) 1-2cos2x
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MATHEMATICS 1 (AH)

CONTENT

Integration

1.3.1 know the meaning of the terms integrate, integrable, integral, indefinite integral,
definite integral and constant of integration

1.3.2 recall standard integrals of x* (@ € Q, & # -1), sin x and cos x
J(af (x) +bg(x))dx = an(x)dx +bjg (x)dx,a,be R

jf(x)d’c:jf(x)derjf(x)dx,a <hb<c

a [

a

Jf(X)dx=—if(x)a’x,b¢a

b

]f(x)dx =F(p) - F(a), where F'(x) = f{x)

1.3.3 know the integrals of ¢*, ', sec® x

1.3.4 integrate by substitution:
expressions requiring a simple substitution
expressions where the substitution will be given

S0
A

the following special cases of substitution J [ lax +b)dx J )
X

The content listed below is not covered within this support material:
1.3.5 use an elementary treatment of the integral as a limit using rectangles

1.3.6 apply integration to the evaluation of areas including integration with respect
to y [A/B]
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MATHEMATICS 1 (AH): INTEGRATION.
Introduction

Integration is defined to be the inverse process to differentiation.
Indeed it is often called antidifferentiation.

Just as we had 9 standard derivatives, so we have a set of standard integrals together

with a set of methods.

A+l
1) j x"dx = L + C , where C is a constant, n # —1
n+1
& n+l
2) j (ax+h) " dx = M%— C, where C is a constant
aln+1)
Example }

3
LY (s 3001
f[x+x—2] de = | (x +3+~;3~+XGde

:j (x3 +3+3x‘3 +x‘6)alx

:—l—x“ +3x —Ex_2 ~lx'5 + C, where C is a constant.
4 2 5
1 1

=—x*+3x- 32~—5+C
4 2x 5x

Example 2

Example 3

x* +3x° x’ 3x?
RIS

X

}a:j (c? +3x ax

1 3 )
= §x3 +§x2 + ', where C is a constant.
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Examples for class
Integrate:

(1) jsxazx ) j 5¢%dx (3) j % (4) jde () j (4? = 5% +1)dx

(6) J.x(Sx—%}dx (7) j (2x - 3)(x+4) dx (8) J Yx dx (9) j ('E’erﬁli)dx

(10} J a dt (11) j (ljw%*lex (12) J‘ (x2+3dex

X X X

(13) IX—J—_—xzjldx (14) j N2x+ 3 dx (15)] ax

x° (3-2x)2
(16) I«/ax+b dx (17)[ (4x +5)% dx
4
(18) [ x0+00+xdr (19 [ b’ —6x?+5)ax 2o [ * e
e
dx dx x*+3x+1
en | —— @ | ——— @3 | |"——|dx
I 2x-1* j (3-2x)° I[ x° )
Answers
4 3
(1) 3L+C (2) 5%+C (3) §+C A6+C
3 2 3 2 3 2
5) BH e 6 P o 22 e
3 2 3 4 32
¥
(8)3x—+C (9 Ex%+2x%+c (10) at + C (11)~L+l—x+c
4 3 2x°  x
2 2
12 % y3crc 1 s tic e leesntic
2 2 X 3
%
15 — L i e 2t o an Liaxas)iac
2(3-2x) 3a 12
2 3 4 5 3
18) o+ X 42 X e 19t -2+ 50+ C co X Lie
2 3 4 5 3 x
1 1 2 3 1
21) -t C (22) ————+C e3n -2 " iC
6(2x-1)° 4(3-2x)° 2 x 2x°
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Example 4

2
If d }; = 3x*%, find y in terms of x.
dx
d’ d
—-‘%)- =3’ = a}i:.[ 3xide=x+4, where 4 is a constant.
=y :%x“ + Ax + B, where B is a constant.
Example 5
Ifglz —,and if y = 3 whenx = 1, find y in terms of x.
dx  (3-2x)°
dx  (3-2x)° (3-2x)*
= —2 3- ZJC)% + A, where A is a constant
1
(3-2x):

Whenx = 1,y =3, giving 3:%+A:>A:2

Hence = y = -—I—T +2
(3-2x)°
Examples for class

(1) If %:mz, find y in terms of x, wheny =5 if x = 1.

a’zy
dx* dx

also when x =1, y =1.

(2) If

d
(3)  The gradient of a curve is given by dl =9x” —10x + 4.
%

If the curve passes through (1,6), find y.

Answers
5x° 11

(D) y=2c+3 (2) };=?~+z}c—g (3) y=3x" =54+ 4x + 4

Mathematics: Mathematics 1, 2 and 3 (Supplementary Pack) (AH)

= 5x , find y in terms of x, when it is known that if x = 2, @ =12and

32



Two more standard integrals

3 f dx =lln(ax+b)+C
ax+b a

4) J- eax+bdx — leax-#-b + C
a

Example 1

dx }
I Z =1Ilnx+C, where C 1s a constant.
x

Example 2

J' de  _1 In(2x —3) + C , where C is a constant.
2x—-3 2

Example 3
1 4x
J eMdx = Ze + C, where C is a constant.

N.B. When dealing with J

. always ensure that {ax + b) is a positive

(ax +b)
quantity.
Examples for class
1.4 dx 3 4
(1)j7dx (.z)jﬂ3 (3)I(ﬁ—xm2}dx
dx P 31
@ [ = (5) [ 3edx 6) [ ™ dx
@ [ b +e Far ® [evar ©) [ et ar

ao | {I—fo:ldx (11) Ffmdx 12 | (—e_'z"x)dx

e

13) [ 37 a4 |
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Answers

(H14lnx+C 2)Ink+3)+C (3) 3In(x —1) —dIn(x = 2) + C
1 3 2x 1 Jx-1
(4) -~In(3-2x)+C (5) —e“* +C (6) —e™ +C
2 2 3
1 5, L, 1 5 4
(7) —e“ +2x——e “+C (8) =™ +C (9 2e” +C
2 2 3
(10) ¢* +x+C (1) -In{l—x) +C (12) x + %e/ e
9 ~ 4 (1-x) 1 1
(13) Ze ; +C (14) gln(3x+4)+C (15) mgln(—Zx—B) +C
Example 4
2
[ T
x+1

For this type of example, we use the following rule:

If the degree of the numerator is greater than or equal to the degree
of the denominator, divide out then integrate.

2 1 x-1
J_dx: iix—IJr—m dx x+1)x°
x+1 x+1 ,
X“+x
: -X
=Ex2—x+ln(x+l)+A —x—1

where A4 is a constant,

Example 5
x 1 1
| ——ax= [1—_};& x+1)x
x+1 x+1
x+1
-1

=x—In(x+1) +C, where C is a constant.
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Examples for class

Integrate:
6x° +1 1+ x°
1 d (2)
()J 2x—1 * -[ 1—-x
x° 3-4x?
4) (5
( Il—Z;c )J 2—3x
x+5 X
7 (
@) Jx+2 J 3x+1
Answers

2
M L3 ek +C
2 2 4

3x° 9
(3) “"2——2)6 +§]n(2x +1) +C

Dx+3nk+2)+C

More standard integrals

] 1
5) J sinax dx =—-—cosax+c¢
a

1
&) I cosax dx =—sinax +¢
a

1
7) J sec’ ax dx = — tanax + ¢
a

2) —%—x—zm(pxnc

@ - X Lia 2 4c
48

6) x=3Inlx+ 1) +C

1 1
8) —x——=InBx+1D+C
(8) 3579
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Examples for class

Integrate:

(1) J- cos5x dx (2) I sin 3x dx (3) I cos (2x +a) dx

(4) Isin lJc dx (5) J- sec?| | ax (6) J cos3x —sinf = | | dx
3 3 3

(7) J sin 2x dx (8) I cosl-3x)dx (9 J sec? Cx +1)dx

Answers

(1) %sin5x+C (2) —%cos x+C  (3) %sin(Zx+a)+C

(4) —3cos lx +C (5) 3tan Y i (6) lsin 3+ 3c08 = +C
3 3 3 3

1 . 1. 1
{7) —Esxn2x+c (8) —gsm(1—3x) +C 9) E[an(2x+1) +C

Another standard integral

f@
8) j—f(x)dx nfx)+C

Example 1

COSX X .
J- dx =In(sinx) +C , where C is a constant.

sinx

Here f{x)=sinx and f'(x)=cosx

Example 2
_[ sinx dx:—j (—smx)dx
cosx COSX

=—In{cosx) +C, where C is a constant. Here f(x)=cosx and f'{x)=-sinx

:ln[ ! J+C
COS X

=Ilnsecx+C
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Example 3

2
J 3;( de =1n(x* +1) +C, where C is a constant,
x +1

Here f(x)=x>+1and f'(x)=3x"

Example 4

X 1 6.x L o
J3x2+ldx_gJ 3x2+1dx Here f(x)=3x"+1 and f'(x)=0x

= %ln (3x* +1)+C, where C is a constant.

Examples for class
Integrate:
(1) juﬂﬂ—dx @[ ——a O] ¢ i @ | A
3x? +5x+1 2x%+3 e’ +1 e’ +6
X 1+cos2x

5 d 6) | ————dx (7y | tanx dx (8 cotx d
( )Ixzwl * J 2x +sin 2x J * )J T
Answers
OIGE+5x+1D+C 2 %m(zﬁ 3 4C (3) Infe" + 1) + C

1 3r ]- 2z 1 .
(4) Eln(e +6)+C (5) Eln(x ~-1+C (6) Eln(Zx +sin 2x) + C
{(7) -In{cos x) + C (8) In(sinx) + C
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Standard Integrals

These integrals can be collected in a table as follows:

Function Integral
(ax +8)" (ax +b)"", n=-1
aln+1)
! —1-ln(ax +5)
ax+b a
. 1
sin (ax +5) ——coslax +5)
a
1 .
cos (ax +b) —sin(ax +5)
a
2 1
sec” (ax +5) —tan (ax + b)
a
ax 1 ax
e —e
a
/) In(/ ()
fx)
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Integration by substitution
Indefinite integral

It sometimes happens that an integrand which is difficult to reduce directly to one of
the standard forms, may be reduced more easily by the choice of a suitable new

independent variable.

Example 1
x4
.
I (+1) ¥
ldu
- [ 5

U
1

ZEJ u” du

1

1
=———+C
10u

- e
100 +1)°?

Example 2

J sin’ x.cosx dx
=j u' du
1

:lsin8x+C

8
Example 3
I xe* dx
:J idu

2

e,
:EI [ du
= %e“ +C, where C is a constant

:le"z +C
2

1 _ )
= g.—Eu 2+ C, where C is a constant.

= gug +C , where C is a constant.

Let u=x"+1

Then au _ 5x°
dx

i.e. du=5x"dx

ie. %a’u =x* dx

Let v =sinx

Then du = cosx dx

Let u =x°
Then L—i}i =2x
dx
Le du = 2x dx

i.e. d—u:xa{x
2
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Examples for class

Integrate:
(1) j. SNY (2) j l—umdx (3) I sinx.cos’ x dx
1+cosx x+2c0sx
in2x 2x’
4 in® x.cos” x dx 5) _ SIMEX o (6) dx
()Jsm * ( IcH—bcos‘j'x J. 1+x*
(7) j x2e* dx () J 3xe® dx (9) J xe(‘zﬂ)dx
Answers
{1) —In{cos x) + C (2) In(x + cosx) + C (3) ~;coss x+C

(4) §C083 x —%cos5 x+C (using the substitution « = cos’ x}
1 2 [ . ; .
(5) —Eln(a +heos x)+C  (6) — . . (7) —.

|) — .. (9) %e“‘“” +C

Definite integrals

Example 4

IZ sin® x cosx dx Let # =sin x
1]

du = cos x dx
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Example 5

Js dx 3 Letu=5x+2
2 (5x+2)
1 ¢2 du
=§LZ = du=5dx
42
:l{_lu—ﬂ e, dt = - du
5L 2 i 5
*_i{ir x|2]8
101 u® ], u 112142
__1 J__J_}
10 427 12°
1
1568
Examples for class
Evaluate:
2 3 3 2
M [ a @) [x*e dx @) [rerlax
01+x 1 o
vox? “lnx P X
(4) — X (5) ——x (6) X
01+x3 -!xz o V3+x2
7
(7) Itan"’xdx
0
Answers
@ Lm17 @ tee®-n 3) Lee' -1
2 3 2
1 e—72 1 1
4) —in2 5 6) 2 -3 7) ———In2
4 3 n (5) . (6) (7) 575 n
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MATHEMATICS 1 (AH)

CONTENT

Properties of functions

1.4.1 know the meaning of the terms function, domain, range, inverse function,
critical point, stationary point, point of inflexion, concavity, local maxima and
minima, global maxima and minima, continuous, discontinuous, asymptote

1.4.2 determine the domain and the range of a function
1.4.3 use the derivative tests for locating and identifying stationary points
1.4.9 sketch graphs of real rational functions using available information, derived

from calculus and/or algebraic arguments, on zeros, asymptotes (vertical and
non-vertical), critical points, symmetry

The content listed below is not included within this support material:

1.4.4 sketch the graphs of sin x, cos x, tan x, €*, Inx and their inverse functions,
simple polynomial functions

1.4.5 know and use the relationship between the graph of y = f{x) and the graphs of
y =kflx),y =flx) + k, y = flx + k), y = flkx), where £ is a constant

1.4.6 know and use the relationship between the graph of y = f{x) and y = | f{x) | and
-1
y=/"

1.4.7 given the graph of a function f, sketch the graph of a related function

1.4.8 determine whether a function is even or odd or neither and (symmetrical) and
use these properties in graph sketching

Note that symmetrical is included in the covered content.
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MATHEMATICS 1 (AH) : PROPERTIES OF FUNCTIONS
Application of second derivatives to distinguish types of stationary values.

If,at x=a, 1} f"(a) < 0, then f(x) has a maximum stationary value.

2) f"(a}>0,then f (x) has a minimum stationary value.

3) f"(a) =0, no information — table of signs must be used.

. . d
N.B. At a point of inflexion, the tangent need not be horizontal i.e. ?i% =0

A
But dxy = 0. In this case, the point of inflexion is not stationary.

2

Example 1

Determine the stationary points of y =—x*.
y=-x

id = —4x’

dx

d 2

dx); =-12x*°

dl:O@—4x3=0
dx
= x=0

2
At xzo,i‘; Y =0 —Table of signs

%
x | —]|0]|—=
%+0—
A

y has a maximum stationary point (0, 0).
Example 2
Find the stationary values of f (x) = 2x* —x* —2x” and determine their nature.

Fl)=2x" —x* -2x°
Fxy =10x* — 4x° — 6x°
fl(x) =40x’ —12x% ~12x
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F)=0e10x" —dx’ —6x° =0
e 2x 6x P =2x-3)=0
=20 Gx+3)x -1 =0

. 3
< x =0, twice orxz—g or x=1

At x=0, f"(x)=0— tableof signs X - 0 —>

At x=0, f(x)=0- Point of inflexion x| - 0 -

3
Atx=—2 )=
x=-g. Jl=-g

3 . . .
Hence at x = s Maximum stationary point.

At x :—E, fx) =~5~99—— Maximum
5 3125

Atx=1, f{x)=16>0
Hence at x =1, Minimum Stationary Point.

At x=1, f(x)=-1 - Minimum

Examples for class

Investigate stationary values of each of the following, stating

(a) the value of x for which it occurs;

(b) the stationary value;

{(c) whether it is a maximum or minimum or a point of inflexion.

1) k=22%x-1 (2 £Gx-4 3 x1-x (4) —
xi+1

(5) x* +4x° 6 x(c'=5 (7 3x -8 +6x* (8 1x
—X

5

Q) —— (10) x —2cosx  (11) 2x—tanx
(x+2)

Mathematics: Mathematics 1. 2 and 3 (Supplementary Pack) (AH)

44



Answers

4
(1) (a)x—Z, 5
(2)(a)x=0,3

2
(3) (@ x= 3

(4) (a}x=0

(5) (a) x =0, -3
6) (ayx=1,-1
(7) (@ x=0,1

8 (@x=02

10
(9) (@) x =0, 3

4 4
(b) (2, 0), (5.-2-7*)

(b) (0, 0), (3, -27)

2

33

(b) (0, 0)

2
(b) (5, )

(b) (0, 0), (-3, -27)
(b) (1, -4), (-1, 4
(b) (0, 0, (1, 1)

(b) (0, 0), (2, -4)

{c) x = 2 maximum, x = 3 minimum
{c) x = 0 pt of inflexion, x = 3 minimum
(c) minimum

(c) minimum

(c) x = 0 pt of inflexion, x = -3 minimum
(c) x = 1 minimum, x = -1 maximum

{c) x = 0 minimum, x = 1 pt of inflexicn

(c) x = 0 minimum, x = 2 maximum

10 10°
(b) (0, 0), (_—3—, WEE)

(¢c) x =0 pt of inflexion, x = -139 maximum

S5t o Yn 1ln 50 5m \/5 T on 3
A0 x= -2 T 22T o) (- M) RS
6 6 6 6 6 6 2 6 6 2
(d) x= - maximum, x = — — minimum, x = Zﬂ:— maximum, x = —— minimum ..
LA T LA «
1Mx="=,-= by (%, >=-1), (=, -—+1
(11) x 3 (b} 43 )(‘4 > )

n X T, .
(c) x = Z maximum, x = —Z minimuim
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Example 3

Find the points of inflexion of the function y =x* - 6x° +8x+5.

y=x"-6x"+8x+5

dl:4x3—12x+8
dx

40 1212
. . : dzy P
At points of inflexion, . =0=12x"-12=0
& 12x-Dx+1)=0
S x=lor-—-1
dy

At stationary points, = 0 4x’ —12x+8=0

o 4x-DMx-Dix+2)=0
o x=1twice orx=-2

X =11 [
i + 10 +
dx

A=A

Hence points of inflexion are (-1, -8) and (1, 8).

Examples for class

Find any points of inflexion on:

(1) y=3x"—4dx+5 (Z)y:x4—6x278x
(3) y=x(x*-1) (4) y=x*(x +6)
Answers

(1) {0, 5) (2) (-1, 3),(1,-13)  (3)€0,0) (4) (-2, 16)
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Curve sketching

1. Symmetry about x-axis.

A curve is symmetrical about the x-axis if both the point (h, k) and the point
(h, -k) satisfy its equation. This will always be true if the equation contains
only even powers of y.

Example: y° =x
2. Symmetry about y-axis.

A curve is symmetrical about the y-axis when its equation contains only even
powers of x.

Example: y =x%, y=4x*+2x*+3
3. Symmetry about the origin.

This symmetry will exist if both (&, £) and (-&, -k) lie on the curve. This will
happen if the equation contains even powers of x and y.

Examples for class
What symmetry is possessed by the following ?

1 1
(1) v= (2) x° = (3) y=x(x*-1
Y xi+1 y2+1 Y
5 5 w2 _ 2 z _ ﬁ iV_i_
4 x>+y" =5x"y=0 (3) x*+y° =4 6 —+=—=1

Answers
(1) symmetrical about y axis (2) symmetrical about y axis and x axis and the origin

(3) symmetrical about origin {4) no symmetry
(5) symmetrical about y axis and x axis and the origin

(6) symmetrical about x axis and y axis
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Points of inflexion

We have already seen that if a point of inflexion occurs on the curve y = f (x} at

x=a, f'la)=0.1falso f'(a) =0, then the point of inflexion is also a stationary
point i.e. at this point the tangent to the curve is horizontal.

Example 1

If £'(x)=(x-1)*(x—8)°, find the x co-ordinates of the points of inflexion on
The graph of £ and determine the shape of the graph in the neighbourhood of
each point.

) =&-D"x-8)°
') =7-8(x-1°(x-5)

At the point of inflexion, f"(x) =0 7(x-8*(x-1)"(x-5 =0
& x =8, twice, or x =1, thrice, or x =5.

x - 1 Y 5 - 8 -
o | - 0 - o0
Pt of Pi of Min
inflexion inflexion

The points of inflexion are given by x =1 andx = 5.

Examples for class

Find the points of inflexion of the curves and determine the shape of each curve in a

neighbourhood of each of the points.

(1) y=3x—x" (2) y=x*+4x’ (3) y=x"+x+x
(4) y=3x* —8x* +6x3 (3) y= a 6) y= h
g d ' +3 * 3xf +1
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Answers
(1) (0, 0) shape: +++ (2) (0, 0) shape: +0+ , (-2, -16) shape: +++

(3) (0, 0) shape: +++ (4) (%, ;—;) shape: +++, (1, 0) shape +0+

2

(5) (-V2, 3(7—5) shape: ---, (\2, ) shape: ---

(6) (-1, -1) shape: -—, (0, 0) shape: +++, (1, 1) shape: ---

Vertical Asymptotes

1
Consider the curve y =—.
X

Since division by 0 is not allowed, y has no value when x is zero. However as x
approaches 0 through positive values, so y takes increasingly large positive

values e.g.
x=0.1 y=10
x=0.01 y=100
x = 0.001 y=1000

We say that “ as x — 0 through positive values, y — +07
And write “x = 0+, y = + o7
Similarly “x 50—, y — —o”

C

We can show this diagrammatically as
M
The line x = 0 is called an asymptote to the curve.

An asymptote may be thought of as a tangent to the curve at infinity.

Example 1
Find the equation of the vertical asymptote and indicate how the curve
approaches the asymptote.

1 3 X 1
@ y=—"> by=—= y=——"F"—— Wy=
Y x—1 Y x+2 Y (x=D{x+2) Y x% -1
() x =1= x—1=0and so y is undefined here. L
x=>1+ ,y—>+ee
x=1- y—>-—00 \
x =1 is the asymptote. x=1
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x—= -2+ ,ypo>+

(b) x = - 2 is the asymptote |
x=>(=2)— ,y-—>—0 J

{c) x =1 is an asymptote L
x—=i+ y—o+o |
x—=1- ,y—>-—0 \

x—=(=2)+ ,y >+

x = - 2 is also an asymptote ‘ k
x—=>(=2)— ,yp—>—e° )

1 1
221 (x+D=1

(d) y=

x = -1 1s an asymptote )
x>+ ,py—o—e
x=>()— y—o+ee (

x =11is an asymptote k
x—=>1+ .y >+ \

x—=1- y—>—w
x=1

P . .
Rule: If y = Q(x) , then the equations of the vertical asymptotes are given by
X
factorising the denominator Q(x) and equating each factor to zero.

Examples for class
Find the equations of the vertical asymptotes to the following curves and show how

the curve approaches each asymptote.

— 2 —
(l)y___x(x 1) @) y= X : (3)y=(x 1)(x+2)
x+1 4—x X
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Answers

1) x=-1 L 2)x=2 { v=2

(3Yx=0 )

Oblique asymptotes and asymptotes parallel to x-axis

The method indicated in the previous section does not find all asymptotes. In order to
find other asymptotes, we must divide out the fraction and let x — + oo,

Example 1

_ x° _ 1

x°+1 x° 1

x—+e yp—1- — =
As y=1

x> -0 ,y—l-

y =1 is asymptote

Example 2
_2x _, 6
x+3 x+3
x>+ y—o2- = —
As =2
x—>—0o ,yp—2+ Y=

¥ =2 is asymptote

Example 3
2
y:x x=x-—2+—————2
x+1 x+1
X—+° y—ox-2)+
As

x—— y—>x-2)-
y =x—2 is asymptote
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Example 4

x* 1
== -1+ — -
Y X +x+1 P+ x+1
x->+o .y x-1+ /
As
x> - y—=>x-1)+ y=x-1

y=x—1 is asymptote

Example 5
x 1
_ L S
y_x3+1ﬁx3 i 1 ——
T 14 T~ =0
3 3 3 J
X X £

x—+o ,y >0+
As

x—=— y—=>0-
y =0 is asymptote

We can combine all of this in the following rule:
A. Vertical asymptotes obtained from denominator, by factorising and equating each
factor to zero.

If numerator is of degree equal to, or higher than, that of denominator, divide out.
This gives asymptotes

y =k ,if equal degree.
y =mx + ¢, if degree of numerator higher than that of denominator.

C. If numerator is of lower degree than that of denominator, divide each term by

largest power of x.
This gives vy = 0 as asymptote.
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Examples for class

Find equations of asymptotes (vertical, horizontal and oblique)

(x+1)°

2x

Answers

(1) VA.x=0
OA.y=x+3

4 V.Ax=2
OA y=x

(7VHA.y=0
VA x=3

(10} no asymptotes
{(parabola)

(13) VAsx=1landx=-1 (14) VA .x=3

HA y=0

(16) VAsx=1andx=-1 (17) VAsx=1landx=-1 (18 V.A x=

OA. y=x

(2)

(5)

(8)

(11)

2) y= 3) v
x_
2 2
(5) y=—— ©) »
2% =
+1
(8) y=2 (9) y
x—1
4
11) y=(x-1) +—
A y=bx ) x+1
(14) y = zf
P48
(17) y ==
X2
VA x=1 (3)
DA y=x+1
HA. y=2 (6)
VAsx=1landx=-1
VAx=1 9)
HA y=1
OAy=x-1 (12)
VA x=-1

(15)
HA. y=2

OAy=x

Mathematies: Mathematics 1, 2 and 3 (Supplementary Pack) (AH)

x:=10x+9
£ +10x+9

HA y=1
V.Asx=-landx=-9

OAy=x-2
VA x=-4

VA x=0
QA y=x

HA.y=0

V.A x=-2
HA.y=3

3

-

HA.y=0
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Curve sketching

In sketching a curve, the following should always be considered:

1) Symmetry
2) Stationary points
3) Asymptotes
4) Points of inflexion

5) Special points (interactions with axes, asymptotes etc.)

Example 1
2
Sketch the curve y = — a
x°+1
1) If (x, y) lies on the curve, then so does (=x, -y).

Hence curve possesses symmetry in the origin.

2x dy _ 2-2x? 20 -x){+x)

2 = , - _
R dr  (c2o1)?

dy

(x2+1*

At stationary points, d—zO@ 21-x)1+x)=0e=x=1or-1
x

There are two stationary points (1, 1) and (-1, -1).

(-1, -1) is a minimum stationary point x =1 1 |—
. : : : dy
(1, 1) is a maximum stationary point. i 0 01~
3) There is no vertical asymptote. 4 Eﬁ Y
2x
2x e _ _
TTER 21 1
e —— 1 + 3
x* x? x “~__
asx—>+°°,y—>0+ — =0
x— -0,y ->0-
dy 2-2x° 2y —dx(x*+1)3-x?
4) dy _ 22x2:>d);: x()c2 )(4 x°)
de  (x°+1) dx (x®+1)
2
At point of inflexion, %_Jzi =0=>x=00r++/3
X
There are three points of inflexion (0, 0), (/3_ 543 (—\E ~143
x|=1-Bl>jo|- V3=
220 I I I I R
dx
~ N
4 ™
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5) Whenx =0,y=0
When y=0,2x=0=x=0
Curve meets x and y-axes at (0, 0).

| i I
xb
(43.-143
(-1,-1)
Example 2
—Dix -
Sketch the curve y =w.
X
1) No symmetry
- - ? - 4 4
2) y:(x Dic-4) _x"-5c4+4 . 4
X X X
P _, 4 _x-4 (x-2)x+2)
dx x° xt x°

At stationary point ?=0¢:> x-2)x+2)=0e=x=20r-2
X

There are two stationary points (2, -2) and (-2, -9).

xi=|-2i=|>|2|=

dl+0——0+

dx
A [ [ N |

(-2, -9) is a maximum stationary point
(2, -2) is a minimum stationary point.

3) Vertical asymptote isx =0
x—04, y—o>+o \
As
x1—=0- y—o>-—-o \

For other asymptotes,

4
y=x-5+—
X

— + oo, — x =5+
AS)C ¥ X

x—=>—9, y—=(x—5-
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d 4
4) Y 1-—
ax X
2
fixj; = % which is never zero.
X

Hence there are no points of inflexion.

5) When y=0, (x-Dx-4=0=>x=1or4
Hence (1, 0) and (4, 0} are on the curve.

Example 3
2
Sketch the curve y = M, without discussing points of inflexion.
(x+Dx-1
1) No symmetry
2 3 2 + 9
2) p= x(x+9 _x ;|-9x :x+9+x7
(x+1)(x-1) x° -1 x° -1
dy _ x(x=3)(x*+3x+6)
dx (x*-1°

. .. d
At stationary point, Ex)i =0 x=00r3

There are two stationary points (0, 0) and (3, 13.5)

x|=|0|—=]1—|3|—

@
dx

+ 10 |- | -0+

AP M

Max

(0, 0) is a maximum stationary point
(3, 13.5) is a minimum stationary point.
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3) Vertical asymptotes arex = -1 and x = 1

x>+ yo -
As
x> =) ,y—>+oo

x—=1l+ ,y—>+oe
As
x—1- ,y—>-—9

For other asymptotes

1,9
2
y=x+9+x2+9 =JC+9+“)‘C—‘L
x" -1 - —
xZ
x—>+%°, y—=x+9+
As
x—>—c, yo&x+9)-
v =x+9 is an asymptote.
4) Whenx=0,y=0

When y =0, x* (x+9) =0=x =0, twice or x =9
Hence curve crosses axes at (0, 0) and (-9, 0)
Curve crosses y =x+9 at (-9, 0).

x=-1
\
\
x=1

T T T 1T 17T T T°71
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Examples for class

Sketch the curves:

X+ 2

(1) y=

C x%4+10x+9

Answers

_x2—10x+9

(x—=1D(x+2)

(5) y =

Y 43 -2)

(x+1)°
xZ

(1) VA x=1HA.y=1; (-2,0); no stationary values

(2) V.Asx=-3andx =2, HA. y=1; (1, 0), (-2, 0); max t.p. (-0.5, -0.36)

(3) No asymptotes; (0, 0); min t.p. (-1, -0.5), max t.p. (1, 0.5)

(4) No asymptotes; (-v3, 0), (N3, 0); min t.p. (-1, -4), min t.p. (1, -4), max t.p. (0, -3)

(5) V.A.x=0,0.A. y =x + 3; (-1, 0); min t.p. (2, 6.75), pt of inflex. (-1, 0)

(6) V.A.x =2, Q.A. y = x; no zeros; min t.p. (5, 8), max t.p. {-1, -4)

(7) VAsx=1,x=-1, HA. y = 2; (0, 0); max t.p. (0, 0)

(8) V.A.x=-1,0.A. y =x + 1; no zeros; min t.p. (1, 4), max t.p. (-3, -4)

9 V.Asx=-9,x=-1,HA.y=1; (1,0), (9, 0); min t.p. (3, -0.25), max t.p. (-3, -4)

The shapes of the graphs can be checked using a graphic calculator.
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Further examples

Having sketched the curve y = f (x}, it is possible to sketch y = ) easily, using

the following facts.

1
Flx)

(it A maximum (or minimum) stationary point (a, f {a)) givesrise to a

(1) A zero of f (x) gives rise to a vertical asymptote of y =

. . . . i
minimum (or maximum) stationary point [a, ( )} .
a

(iii) If f(x) > 2o as x - L oo then —>0as x — £ oo,

f )
Example 1
2
-1
Deduce the sketch of the curve y = ZL,#
x°(x+9)
2 (x+9)
(See earlier example 3 for the graph of y = ————
P S TP
1) No symmetry.
2, . . .

2) (3, E] is a maximum stationary point.
3) x =0 is a vertical asymptote

x>0+, y-—o>—ce

As \ /
x—=0—- y—o -0
x=0
x =-9 is a vertical asymptote \
x>+ y-—+e
: )
x=>E9) — ye->—o0
x=-9

y =0 is also an asymptote

X —>+ o9, -0+ =0
As Y T Y

x— -, y—>0-
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4) It meets axis at (-1, 0) and (1, 0).

Examples for class

Sketch each of the following and then deduce rough sketches of y =

S ()
1
And y=-
ne S (x)
(1) y=—2 @) y=-* 3 p=—"
y_3x2+1 y_(1+x)2 Y x°=3
4 (x-2)° (x~2)"(x+3)
4 = _ = =
@y x+x2 Gy x (x—3) ©) ¥ 3—x
2x° +13x+15 x°
7y pm it TOOTT I =
Dy (x—1{x* -1 ®) y 2 +1

Answers can be checked using a graphic calculator.
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MATHEMATICS 2 (AH)

Introduction

These support materials for Mathematics were developed as part of the Higher Still
Development Programme in response to needs identified at needs analysis meetings
and national seminars.

Advice on learning and teaching may be found in Achievement for All (SOEID 1996),
Effective Learning and Teaching in Mathematics (SOEID 1993), Improving
Mathematics (SEED 1999) and in the Mathematics Subject Guide.

These materials were originally issued to schools to support CSYS Mathematics.
They have now been updated and matched to the Arrangements for Advanced Higher
Mathematics to be issued as part of the support material being provided for
mathematics.

It should be noted that not all of the content of Mathematics 2 (A} is covered by this
support material. The outcomes covered are Further Differentiation, Further
Integration and Complex Numbers. At the start of each outcome a list of the content
covered by the material has been included.
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MATHEMATICS 2 (AH)

CONTENT

Further differentiation
2.1.1 know the derivatives of sin 'x, cos'lx, tan'x

2.1.2 differentiate any inverse function using the technique:

y=f = =x= (@) ) =1, elk.,

. dy 1
and know the corresponding result — = —
dy

2.1.3 understand how an equation f{x, y) = 0 defines y implicitly as one (or more)
functions of x

2.1.4 use implicit differentiation to find first and second derivatives [A/B]

2.1.5 use logarithmic differentiation, recognising when it is appropriate in
extended products and quotients and indices involving a variable {A/B]

2.1.6 understand how a function can be defined parametrically
2.1.7 understand simple applications of parametrically defined functions

2.1.8 use parametric differentiation to find first and second derivatives [A/B]

The content listed below is not covered within this support material:
2.1.8 (parametric differentiation)..., and apply to motion in a plane

2.1.9 apply differentiation to related rates in problems where the functional
relationship is given explicitly or implicitly

2.1.10 solve practical related rates by first establishing a functional relationship
between appropriate variables [A/B]
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MATHEMATICS 2 (AH) : FURTHER DIFFERENTIATION
The inverse sine function (sin”'x)
The inverse sine function, sin’'x, is defined to be the angle whose sine is x.

If we consider the graph of y = sin.x, we see that there are an infinite number of
angles whose sine could be x. Consequently, in order that the inverse sine function
should be a true function, we must restrict the angle concerned.

We choose the simplest possible restriction for the angle, namely the closed interval

. Our definition now is:

(SRR

L]

Do | R

The inverse sine function, sin 'x, is defined to be the angle in the closed interval

o
2" 2]

whose sine is x.

N.B. sin’'x is sometimes written as  arc sin x.

The graph of y = sin”'x

y A
T
2 1
y=sinx
E >
-1 X
T
2
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Example 1
sin!0=0; sin* l = E; sin’! wl@ = —EE»; sin'1= T
6 3 2

Example 2
sin!(sinm ) = sin” ' (0) = 0; sin'l(sin(ég—J) =sin’ (1) = %

Examples for class

L 1
Evaluate: (1) sin 1(—

«/E}
(5) sin’l[sin(%x D (6) sin” (sin (21))

(2) sint{-1) ;  (3) sin™ (— %) (4) sin! 0 ;

Answers

n n T T
(UZ (2)-5 (3)_€ 4 0 (5)-2 (6 0

The inverse cosine function (cos 'x)
In this case, we restrict the angle to the closed interval [0, T
Qur definition now 1s as follows:

The inverse cosine function (cos 'x or arc cos x) is defined to be the angle in the
closed interval [O,J'E whose cosine 1s x.

The graph of y = cos™” x
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Example I

cos'1=0 o cos O=

cos' (D =m : cos’! (— %J

Examples for class
Evaluate

(1) cos™ [@J (2) cos™ (cos {— %}) (3) cos (cos 2x )

Answers
n X b
(1) o 2) 35 3)0 4 —

The inverse tangent function (tan'x)

(4) cos (cos 3r )

. . . : . 1ox .
For this function, the angle is restricted to the closed interval {— 5 2} , providing us

with the following definition:

The inverse tangent function, {tan'x or arc tan x) is defined to be the angle in the

. i A .
closed interval [——2—, E} whose tangent is x.

The graph of y = tan'x
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Example
tan’0=0; tan’l = % . tan’’ [— LJ = —% : tan’! (ﬁ)z—z ;

tan ' (tan ) = tan 0 = 0

Examples for class

Evaluate: () an(1) () tan'{%} 3 tan'0 @) tan‘l(tan%[)

(5) tan" (can %) ©) tan‘l(tanil)

Answers
)9 iy m T 43
i hadl il e =
(1) 3 (2) P (3) 0 (@ y (5) 3 {6) 2

More difficult examples

Example 1

1
Evaluate sin”' | ~——= | -sin” | - —
(Jg] [ 10)

1
Let O =sin’! —
NG

-1
then sing = ——
] 10

—

then sin0 =

Let ¢ =sin’

e

%,_.
]

We require 6 - ¢

sin (B - ¢) =sinb cos¢ —cosh sing

L S B

0 6

-3 .2

V50 /50

_ 5 s 1

ENE NN
Hence@—q):nz
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Example 2

Evaluate tan’! l + tan’! l
3 2

Let & =tan’ ( ] thentan G =

| =

N |
N = | =

Let ¢ =tan’ (fj thentan ¢ =

Werequire 0 + ¢ .

(Students could be asked to prove the result below, first as an exercise)

tanQ +tan¢
1—tanf tan¢
1

tan (0 +¢)=

1
+i
3

Hence 9 +¢=“

Examples for class
Evaluate

(1) sin’! (2\/?) - sin™! {1 3}
13 2V13

(2) Prove that tan' 3+ tan'2+tan'1=0

(3) Prove that 2 tan’ 1 +tan’ Li_=
3 7 4

Answers

(1) % (2) Proof (3) Proof
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Derivative of sin”' x

de 1 dy
In the following, we assume that — , provided ——# 0
dy d dx
dx
Lety =sin'x thenx=siny

and ;ﬁ:cosy =i\/1—sin2y = 41— x°

Ly
dy 1
hence — ==
dx Vi—x®
T X
Since ye |{——, —|,cosy >0
rel-% 2} y

d (. + \_
And so E@m x)—

Example 1

i Ein_l (/i:)]: —~——1—i 1-x
dx 1 dx

-1 L«
J=-x 2J1-x
i

_2\/;«/:; _—Z\Ix—xz

Example
T
— &m x)z]: 2sin” x. = 2sin_
—xz \/l—xz
Example 3

L
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Examples for class
Differentiate with respect to x

x+1 sin” x

{6) sin 2% (7) sin 4x  {8) sin™ (\/; (9) sin” (%J (10) sin™ (lJ

sinx x

(Dsin'(1-x) (2)sin’ [‘“—“1] 3 sin! V1-x* @ xsintx? (5 !

(11) sin” (sinx) (12)x sintx  (13) sin™ stinx (14) sin’!

X
V1+x2

Answers
1 1 1 42 2x*
(1) —— (2) — 3 ——— (4) sin” x*+
2x - x* Jx 2xy1-x 1—x*
= -1 |
5) - sin” x ©) 2 B cosx'sm 2x 7 4
1-x° N1—4x® sinx Sinx J1-16x°
(8) — 9 — (10 —— (11 1
2+ x — x° NF xxt =1
(12) sin x + _r (13) cosx (14) ! -
V1=x* 2./sin x(1-sinx) 1+x°

Derivative of cos™ x
Lety=cos'x thenx=cosy

and %xw:usiny-—-—qjl—coszy,since 0<y<m and 0<siny <1
v

= —+1-x*
dy _1 . d —1 '*1
and so — = Le. — (zos x):
dax 1-x° dx V1-x*
Example 1
—d—cos_l(—l—]— -1 -t 1 1
dx B R B 24 2 _
x 1_{;) x5 1__);1_2_ le/fi,l, axt -1

\/?
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Example 2

Examples for class

Differentiate with respect to x:

poniie

(1) cos ' Bx +5) (2) cos! — (3) cos™ [ !

(5) cos™ (%) (6) cos! (2x%)

Answers
3 1
(1y — {(2)
V24 - 30x — 9x? xx—1
b 1
4 - — (5) - (6)
a’ —x* 9—x°

Derivative of tan™' x

Lety = tan'x thenx =tany

dx
andso — =sec’ y=1+tan’ y =1+4x°

dy
1
Hence d _ 5 i.e.i&an'lx)= 12
dx 1+4+x dx 1+x
Example 1
Zltant| = L 1 a’ 1__a
a x2'a a*+xta at+x’
1+~
a
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Example 2

d [ - \/—_] 1 1 1 I 1
—fan" Jx-1]= . = . =

dx 1+(/x—1} 24x-1 1+—1D 2yx-1 2xJx-1
Examples for class

Differentiate with respect to x

(1) tan™ (2) tan" (1 - 2x) (3)tan V1—x (4) tan! (3 sin 2x)

| -

J (6) tan' [?x;xa J (7) tan ' (g —x)
~3x

(5) tan! | —=
[v‘l —x?

2
(8) (x*+1) tan" x (9) tan'' [ 2 ] (10) tan'' [ 1-x ]

(11) x tan”' x

Answers
1 1 1
(1) - 2 - —— 3) ———
1+x? 1-2x+2x° 2x{1—x)"
6 2 1 30+ x%)°
cos 2x 5) — ©) 2(2 x°) _
1+9sin® 2x 1—x)" {1-3x7)"+ @Bx—x")
(7) RS S (8) 2x tan'x + 1 (9) 2
1+ (@ —x)? (1+3x3)1—xH)%
-2
(10) al (1) tan”'x +
2l-x)" (x* —x+1) 1+x°
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Differentiation of implicit functions

Consider the function y defined by the equation
3x? +7ch+9y2 =6

It is impossible to write y in terms of x. Such a function y is called an implicit
function,

To find % , we take derivatives of both sides.

Example 1
AP+ Ty + P =6

d 5 2
4 e Ty +9vY) =2 (6)
i e

4
dx

d d
=6x+7—(xp)+9—yp® =0
FRRCARRT

= 6x+7 y+.7c92 +9 Zydl =0
dx dx
=>6x+7y+7x@)—+18y€)~)~=0
dx dx
d dy
= Tx—=—+18y—=—-6x-7
a dx 7

ay
=2 (7x+18y) =--6x~-7
dx Y Y

dy —6x-Ty
de  Tx+18y
Examples for class

Find —Zil for each of the following:
X

W - =4 @)y =2ax+26y () -4dx + 6 =0 @y = dax
G)x* = day  (6) &7 +y°) 6" ) =0 DL+ =3y
2 2

x |V 3 . . . dy
8) — 47— =1 DIf+y) - 5x +y = 1 defines y, find =
45 o Y P

(10) If & + )" = 4xy, show that d _yBx—y)
dx  x{x—3y)
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Answers

= (2) =2 3 2-Lly w2
¥y v—>b 3 3 y
_ 3 _ 2
R AN o A M R
2a 2x"p 42y +y yo-3x 4y
2
0 33D (10) Proof
1+3(x+y)

Logarithmic differentiation

If the independent variable occurs as the power or part of the power then
logarithmic differentiation should be employed as follows:-

Example 1 Example2
Differentiate x Differentiate a*
Lety =x" Lety=a"
Take logs of both sides Take logs of both sides
Iny=Inx" Iny=Ina”
=Ilny=xlInx =Iny=xIna
d d
= —(lny) =—(x Inx) ﬂldl:lna
dx dx ¥
1 dy 1 d
= ———=Inx+x.— @ _
3 dx P = o =ylna
1d
==Y g+l =>i(ax):a)r Ina
Y dx
= 24 = y(nx+1)
dx
d

Examples for class
Use logarithmic differentiation to differentiate the following:

L 10° @25 Byxa® @x° (5) sinx)* () 25

(7 (ogx)* 8 x* (O x2.2° (10) (log x)'¢*
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Answers
(1) 10°.Inx (2) 2°In2 3)a +x.alna (4) 2ln xx"* !

(5) (sin x)"(In (sin x) + ~20%%) (6) 2°"*In 2.cos x
SInx
(7) (In x¥*[In{in x) + L] Q) x° (2xInx +x)
Inx
(9) 2°(2x + x“In x) (10) (Inx)™ 1 (1 + In(lnx))

X

Logarithmic differentiation can also be used to differentiate complicated products.

Example 3

+
Differentiate }__x
1-x

Let y = 1rx
1-x

Take logs of both sides
(1+xT
logy=log | —
1-x

= logy =—;—[10g(1+x)—10g(1—x)

}_dl_l[LJ,_l__ 12 1
ydx 2[14x 1-x| 2 0+x0){1-x) 1-x°

dy ( 1 J 1+ ) 1 1
:)—-—:y 3 = - = 3 T
dx 1-x A-x): I+ l-x) (G- 1+x):
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Examples for class

Differentiate
n)x%@_xﬁ o) (2x+1) (4x +5)° G)xﬂz—n2u+m
Q2+ (4x—3)* (5+2x)°
Answers
@ FB=0A(1 1 3
Cx+1D% | 2x 23-x 2@2x+D
(4x +5)% (2x +1)" 32x +1) 5 (dx +5) 7
) 3 + v 7
2x+D) 4 {dx—3)"  ((dx - 3)(dx +5)) (4x - 3)7

Yiga _ 2
3 ¥ (2—x) (1+x)(3 2 N 1 6 }

(5+2x)° Ax 2-x 1+x 5+2x

Curves by parametric equations
Parametric equations

It is sometimes convenient to define the co-ordinates of a moving point by means of
two equations, expressing x and y separately in terms of a third variable, say ¢, called a
paramecter. E.g. the position of a ball relative to the x and y may be plotted at 1
second intervals. Here the x and y axes positions of the ball depend on time ¢,

It would be found that the path of this ball J
is given by the equations:

x=at’, y = 2at, where a 1s constant.

These equations are called the parametric t=1
equations of the curve.

{ is the parameter.

By replacing 7 by various values in the two equations, we can obtain the co-ordinates
of various points on the curve.

e.g. At point P(), x = at®, y = 2at. Hence P is the point {at 2, 2at)
P,(0),x=0, y=0. Hence F, is the point (0, 0)
P(),x=a, y=2a Hence P, is the point (a, 2a)
P,(2), x =4a, y = 4a Hence P,is the point (4a, 4a) etc.

It is often useful to eliminate ¢ from the two parametric equations to obtain an
equation involving x and y but not ¢. This equation is called the constraint equation.
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Here x=at’,y=2at

X = atz, = i
2a
2
x=a -2 -
4a
y®=4dax - constraint equation
Example 1

Eliminate 8 from the parametric equations x =a sec8 , y = b tanf

x=asecB,y=btant

sechH :f, tan® =2
a b

2 2
sec’® — tan’0 ={£) —(Z—} =1
a b

2 2

QN‘ =

it
It
'

Examples for class

(1) Eliminate t fromx =ct, y = ¢
¢

(2} Eliminate 0 fromx=gcos 8,y =asinf

Answers
2

(1)),_._._0__ (2) x2+y2=a2
X
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a’zy
dx?

ay

Expressions for o and in terms of a parameter t

Suppose that a curve C has parametric equations  x = x(2), y = y(t).

b =9§)—£r— and a1

Since — —_—=—
dx dt dx dt fk’t
dx
&
We have dl _dt
de dx
dr

Example 1

Find % at P(9) on the curve x = at®, y = 2ar

y=2at :di:&z
dt

x=at’ :>@=2ar
dt

Thus & =24 -1
dx 2ar t
Example 2

Find a formula for the gradient of the tangent to the curve whose parametric equations
are
x=alt—sind,y=all —cos ).

d .
y:a(l—cost):%:asmr

{
x:a(t—sint):)%x—:a(l—cosr)
f

_dy  asint sin ¢

wgent e afl-cost) 1—cos ¢

Thus m

Example 3

Find the co-ordinates of the points on the curvex = 1 — £y= £ + t, at which the
gradient is 2.

Mathematics: Mathematics 1, 2 and 3 (Supplementary Pack) (AH) 79



_dy 37 +1

Fi =
1angent dr iy
-3+ 1
mlangem=2@‘“—27““_1:2¢:>352+4f+1:0¢:>f=—1 or ?
-1 8 10
¢ = -1 gives the point (0, -2), t = — gives the point | —, —
g p ( ) 3 g p [9 27J

and these are the points at which the gradient is 2.

Examples for class

(1) Find the equation of the tangent to each of the following curves at the given
points:

(a) x=1¢"—2t,y=1—1" at the point £ = -1.

1
(b) x =sint, y = cos 2¢ (—%n Stsé—nJ at the pointt:Z:rt.

¢ t

(2) Show that there are four points on the curve x = — , Y=
£+ t°+1

. N 1
at which the gradient is equal to TS

(3) Find the equation of the tangent at the point with parameter £ = 2 on the curve

o 7
cel T TR

it =-1.

Find the parameter of the other point at which the tangent meets the curve.

Answers
(1) @y=x+3 (b) y = -2N2x + 2

(2) Proof

4 1 3
N p——=—(x—-=
(3) y 5 5(x 9)
) r=-1

4
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Extension examples (covers 2"® order derivatives)

Example 1

2

Find ¥ and 22 torx =ar’,y = 2at
dc © dx

dy
=2at = ->-=2a
Y dt
x=at’ = —=2at
dt
Thus & =22 1
de 2ar
2 J— —
€2 (N _d (N 11 -1
dx delt drlt ) de 7 2ar 2at
2
Note: d{:idlgr—
dx dt dx dx
Examples for class
dz
Find dxj; in terms of ¢:
Wx=Fy=r (2)x=at,y=i (3)x:L, y=L
t 1+¢ 1-1¢
r—1 2r—1
@) x=", p=2"" B)x=3t-0, y=1-¢
t+1 Y r—2 Y

(6) x =tan B , y = sin 20 Nx=f+t, y=3-1r

Answers

3 2 41 +¢)° 9¢ +1)°
1) — 2) — p)
(1 " (2) v (3) TEEE (4) =2

—20-3001+0) (6) 2sin 26 (cos® 8 - 4cos* Q) (7) — 6rle+1)

5 Ll
©) (1-1)° (2 +1)°
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MATHEMATICS 2 (AH)

CONTENT

Further integration
1

1
ﬂ'l_xz ,1+x2

2.2.1 know the integrals of

1

ro2
az _xz a +x2

use the substitution x = at to integrate functions of the form

integrate rational functions, both proper and improper by means of partial fractions;
the degree of the denominator being < 3
the denominator may include:

(i) two separate or repeated linear factors

(ii) three linear factors [A/B]

(iii) a linear factor and an irreducible quadratic factor of the form
x* +a® [A/B]

2.2.2 integrate by parts with one application
2.2.3 integrate by parts involving repeated applications [A/B]

2.2.4 know the definition of differential equation and the meaning of the terms linear,
order, general solution, arbitrary constants, particular solution, initial condition

2.2.5 solve first order differential equations (variables separable)

The content listed below is not covered within this support material:

2.2.6 formulate a simple statement involving rate of change as a simple separable
first order differential equation, including the finding of a curve in a plane,
given the equation of the tangent at (x, y), which passes through a given point

2.2.7 know the laws of growth and decay : applications in practical contexts

Notes

1. Some of the examples include the integration of rational functions with
denominators > 3, these have been included as extension.

2. The section on differential equations contains a short insert on homogeneous
equations which are covered in Mathematics 3 (AH), as above, they have been
included as extension.
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MATHEMATICS 2 (AH): FURTHER INTEGRATION
Application of partial fractions to integration of rational functions

Example 1

J‘ x+35

dx
x*=25

x+35 A
x$-25 x+5 x-5

Thenx +35=A4(x -5) +Blx + 5)

Let

, where A, B are constants

Putx=5gives40=108B = B8=4
Putx=-5gives 30=-104 = 4=-3

x+35 -3 4
= +
x4-25 x+5 x-5

x+35 4 3
I xz—ZSCbC=J (;_S_Jc+5jdx

= 4 In{x-5) - 3 In{x+5) + C, where C is a constant

Hence

Example 2

jx22+10x+6dx
x“+2x-8
1

x2+2x—8jx2+10x+6
x4+ 2x-8
8x+14

x*+10x+6 _, ~ 8r+14
x*+2x-8 x*+2x-8

8x+14 A
x*+2x-8 x+4 x-2

Then 8x + 14 =4 - 2) + Blx + 4)

Let , where 4, B are constants

Putx =2 gives 30=68 = B=5
Putx=-4gives—18=-64 = 4 =3

2 +10x+6 3 5
Hence > =1+ +
x°+2x—8 x+4 x-2
z 3
Hence[iaﬂ@dx: 1+ + > dx
x“+2x—8 x+4 x-2

=x+3Inlx+4) +5In{x — 2) + C, where C is a constant
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Examples for class

dx x? x+8
(1) 2) dx 3 _—
szwl Jx*’-—4 ()jx2+6x+8
(4)f 23x 1 d (5) J- 2x 22Jc 11x de
X" +x-—06 X" —x—6
Answers
(1) %ln(x—l)w;ln(x+l)+c (2) x+Inkw-2) —Inlr +2) + C

(3) -2ln(x + 4) + 3In(x + 2) + C @) 2In{x +3) +Inx-2)+ C

(5) x> —In(x = 3) + 2In(x + 2) + C

Example 3

f 3x+1
(x+1°

3x+1 A B

Let - = +
{(x+1 x+1 (x+1

75 where A, B are constants

Then3x +1=A4A{&x+ 1) +8

Putx=-1gives—-2=8
Putx=0gives 1 =4A+B = 4=1+2=3

Hence 3x+1 3 2

(x+1)2_x+1w()c~5-1)2
_[3x+12dx= {ju zz}bc
(x+1 x+1 (x+1

2
=3Inlx + 1} + —— + C, where C is a constant
x+1
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Examples for class

(l)j 2x—1 dx (Z)J 2x+1

(x+2)° {x +2){x=23)"°
X i +1
o 4 [ L g
(yj.u+n2u—n * ()un—n3

Answers

(1) 2]n(x+2)+—5—
x+2
3 19 5 .
2) —In(x+2) ———Inlx—=3) == (x-3) "' +C
(2) 5 n(x +2) T nix—3) 7,(Jc )

1
2(x+1)

+C

3) — G+ D+ LinG -1 -
4 4

51 L.
3x-1 (x-=-1D°

{4) lnx+%fn(x—l) -

Example 4

J‘ x—1
c+1D (x> +1)

x—1 A Bx+C
+

t > = ; , where 4, B, C are constants
x+D&x+D x+1 x°+1

Thenx ~1=A&*+ 1)+ Bx + C)x + 1)

Putx=-1gives—2=24 = A4 =-1
Putx=0gives—1=4+C = C=-1+1=0
Putx=1gives0=24 +2B+C) > 0=-2+2B= B=1

x—1 1 x
=- +
(x+1D(x2+1) i+1 x*+1

Hence

I—x—_lT—dxzf{ Zx ——I—}dx
(x+Dx"+1) x“+1 x+1
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zlj g
24 (x*+1) x+1

1
=—In(x®+1D~In(x+1 +C, where C is a constant.

Special integrals

=sin'x+C Z)J- 2=f;an*'Jc-i—C

dx
D |

1‘ _ 2
b R P T

Example 5

1+x

dx . .
I =gin 1[%} +C, where C is a constant

VO —x*

Example 6

——x

where C is a constant

Example 7

J' dx - _1 tan"'| £ |+ ¢, where C is a constant
4+ 2 2

Example 8

d I
J' 2x :J' dx : :j dx :l! dx :l.g—tan_l EI LC
9x° +4 4+0x 4 9 4 9. 2 2
9 —+x 3

= % tan ™ (%x] +C where C is a constant
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Examples for class

mJE%E
M)I9fiz
mjjf%?
(10) § ;fx
@ | xdx

(x+D(x* +4)

Answers

u)mx—%mu2+n+c

@ | ==
@jﬁ%?
® j 4x§x+ 9

(14)j (x+2)dx

(x> + {1 -x)

1 1 1
2) “Inlx-D+-—Inlx+1)——Inx*+1 +C
()4n(x )‘4 x )4(

3) sin” 24 ¢
2

1

{4) ltan*l Yic
3 3

(12) —ln()c—Z)ﬁ-ﬁl—ln(x2 +1) —Etan*] x+C
5 10 5

2 L X

(13) —lln(x+1)-&-—}—ln(x2 +4)+—=tan” ~+C
5 10 5 2

(14) —iln(l—x) %—iln(x2 + 4) —Etan“l *ic
5 10 10 2
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() sin™ X +C
4

x°+16

dx
©) I 9x’ + 4

(12) J( dx

2+ (x-2)

87



Integration by parts
Indefinite integral

d
We have already seen that —uv =u av +v au
dx dx  dx

Integrating both sides of the equation gives
d
uv=j ugz.dx+J v
dx dx

Rearranging

(v

Example 1
J xcosxdx=xsinx~f 1.sinx dx

=x sinx + cos x + C, where C is a constant

Example 2
1 1
J xe“dy=—xe“ —f 1.—edx
a a
1 1 4 .
=—xe” ——e +C, where C 1s a constant
a a
Example 3

I xsinx dx z—x‘zcosx+2j xCcosx dx
=—x° cosx+2xsinx—2j' sinx dx

=—x?cosx+2xsinx + 2cosx + C, where C is a constant

Example 4

1
J lnxa’x:j l.lnxdx:xlnx—J. x.;dx

-—-xlnx—j 1ldx=xInx—x+C, where C is a constant

Mathematics: Mathematics 1, 2 and 3 (Supplementary Pack) (AH)

88



Example 5

J sin™ x dx ='{ 1.sin™ x dx =xsin”’ X*J‘

X

V1—x?

dx

=xsin” x — (\/I—xz )+C =xsin™ x ++/1-x® +C, where C is a constant

Examples for class

(1) J xsinx dx (2) Ixsin?;xdx (3) J x% cosx dx (4) J xlnx dx

(5) J i nx dx (6) f Jx Inx dx (7) I xe” dx (8) J xiet dx

(9) Ie” cos2xdr  (10) j tan" xdx  (11) J'xtan"xdx (12) je-‘sinxdx

(13) _f xsin’ x dx

Answers

(1) =xcosx+sinx+C
(3) x%sin x + 2xcos x — 2sinx + C

(5) le lnx—lx3 +C
3 9
(7) xe* -e"+ C

2
()] Zli_ex cos2x + gex sin2x+C

(2) ~£cos3x+—1~sin3x+c
3 9
(4) lx2 lnx—lx2 +C
2 4

(6) Ex% lnxfﬂx% +C
3 9
(8) x°¢" —2xe* +2¢" + C

(10) xtan™ x——;—ln(l+x2) +C

{11) x*tan™ x~éln(1+x2) —xtan™ x+%ln(l+x‘2) +C

1
(12) le‘ sinx ——e" cosx+C
2 2

(13) lx2 sin x +lx2 cos 2x —lxsin 2x —lcos 2x+C
2 4 4 8
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Definite Integrals

Example

X 1 -z " oa _i
j ¢ *sin2xde=|——e *coslx —J —l.—le Yeos2x |dx
0 2 o 0 2 3
=0- 1 HlJme_%costdx
2) 679

:l_l le’fsinZX —Jm l.—le—ﬁsian dx
2 6112 o “ti2 3

1 1 g~ = .
zg—g((O)—(0)+gJ0 e sm2xaIxJ

:l—L “e i sin 2x dx
2 360
= 2 reﬁ sin 2x dx :l
36 -0 2
= Jme_i sin 2x dx zﬁ
0 37

Examples for class

e ] i = .
M [ —lnx dx ) | e dx (3) | e sin2xdx

(4) J; tan "' x dx (5} Ll xsin”' x dx

2

Answers

no 1 T 33

ALY S AL
Wy %

M1-2"' @6 (3)
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Differential equations
Introduction

d
Suppose y =ce”, then Y ocer
dx

So that, for any particular value of ¢, we can say that y =ce " is a solution of the

.dy
equation ———y = 0.
q i Y

We call an equation with a derivative as part of it, a differential equation.
The order of the highest derivative in the equation gives the order of the differential
equation.

Here our equation is of the first order.
. d . :
Finally the equation a’l — y =0 has a general solution y =ce”, wherecisa
x

constant.

Suppose y =c, cosx +c, sinx, where ¢, and ¢, are constants.

Then @ —c,sinx+c,cosx
dx

2
d’y .
and T =—-¢,CO08SX~—C,8INX=—Y

2

dzy

2

In this case, the second order differential equation + y =0 has a general solution

y=c, cosx+c,sinx, where ¢, and ¢, are constants.

Differential equations of the first order

Such an equation can be expressed in the form % =fxp).

Because the equation is of the first order, the general solution involves one constant.
We consider three special types

A. Simple

B. Variables separable

C. Homogeneous
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A. Simple
Method: Solve by direct integration

Example 1

Find the general solution of the differential equation % =2x

g“K:Zx

& | Y = [ 2xax

dx
& y=x°+C, where C is a constant
Hence general solution is y =x ‘s C

Meaning of a solution: This general solution is a system of parabolas, each with the

d
common property that j‘i =2x.
X

Example 2

Find the general solution of % = y?

dy _ o dr_ 1

dx dy y?
dx 1
dy B

1 )
& x = ——4C , where C i1s a constant

Examples for class
Solve the following

d
(1) ay =x? (2) i =y’ (3) 4 =ax , where a is a constant
dx dx dx

d i d d
(4 & _ ay , where a is a constant (3) & y2 -1 (6) & _ sec’ x
dx dx dx
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Answers

4
1 ax’®

X
W) y="r+C @y==—=— B y=—iC

(4) y =4e™ 5) y

-1 B y=tanx+C

Example 3

. . . dy 2 1
Find the particular solution of . =y" wheny= > x=0
X

1
ff_:yz @idﬁ:—z©x=—£+c,whereCisaconstant.
dx dy y b%

General solution is x = — l +C
¥
!

Whenx =0,y= 2,0-—-—,2+C=::C:2.

Hence particular solution is x = 1 +21e y=
y 2—x

Examples for class

dy
(1) = +y=0;y=2whenx=0
¥ v X

dy
2) =+y=3:y=0whenx=0
dr Yy ¥

dy ,
(3) = =sinx;y=0whenx =20
e Y

Answers
(Hy=2¢" ()y=3-3¢" 3)y=cosx—1
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B. Variables Separable

The differential equation is called separable when %y- =glx) hly).

X

The equation becomes % =gx)h(y) & L& g{x)

h{y) dx
1 dy

Its general solution is J ————dx = j g{x) dx +C where C is a constant.

A(y) dx

ie. f h—(;—)dyzj gxyde+C

Example 1

X+y

Find the general solution of % =e

<:>—1—dy =e” dx

e)’
& je"ydy =je"dx+C ., where C 1s a constant.
& -e =e* +C

Hence general solutionis—e~ =¢*+ C

Example 2
1+ y?
Solve j{}_i = __y_z
de 1+x

§Z=_1+_f@f dy

dx .
3 5 :J > +C, where C is a constant
de 1+x 1+y

1+x

etan'y=tan'x+C

& tan(tan™ y) = tan(tan ' x + C)
tan (tan™ x) + tanC
1—tan (tan™ x} tanC

x +tanC
& y=——
l1-xtanC
+ B
(:)y:x , where B =tan C
1-Bx
L x+B
Hence general solution 1s y =
1-Bx
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Example 3

Find the general solution of x i—? = (1+ ) y* and find the particular solution for
X

which y =1 whenx =1,

L+ x)

={1+x)y° <:>Iy dy = f dx +C , where C is a constant

dx
r 1
-y =] “HljdxeC

<:>~l=logx+x+c
Y

L 1
Hence general solutionis ——=logx+x+C
Y
Whenx=1,y=1,-1=04+1+C = C=-2

|
Hence particular solutionis ——=logx+x -2
Yy

Le. l~—"2—10gx—x
Y

Examples for class
Find solution of

(1) (1+x)j—i:xy 2) = =x(1-y)° (3) (1 +y)2%:e”y

(4) cos® x 4 = xp*
dx

(5) @ = (1 —y) cos x, and the particular solution for which y = 2 when x = ;JI
6)y—x & =1+x° @ (7) a’y . A . where C is a constant
dx dx ' +C

dy
(10) == =tanx tan
dx Y
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Answers

(1)y=Ae 2) y=1- 22 (3) (1+y)3:36“‘+C
x+1 x°+4
(4) l=—xtanx—ln(cosx)+C' (5) L=_esi”—‘
Y y—1
Ax fiee 4
6) y=—-—+1 7) y = Ade*” (8)
© y="= (7) e e
9) y = Ae ot (10) siny =
COS X

C. Homogeneous
(Homogeneous equations are covered within Mathematics 3 (AH))

A homogeneous differential equation is one in which the sum of the powers of x and y
in each term is the same.

To deal with these equations, we must use the substitution y = vx and then treat the
new differential equation as variables separable.

Example 1
dy _ 2x—y
X—y

Solve

Let y=vx

d ) " .
Then & =v+x & substituting the equation becomes
dx dx

dv 20 —vx

v+x
dx x+vx
dv  x(2-v)
QV+HX—=
x{1—v)
dy 2-v
SSv+x ——=
de 1+vw
a’v 2—v v_2—v—v—v2_2—2v—v2
dx 1+v 1+ 1+v
+ 1
<:>J—L}f%dvzj—dx+C,whereCisaconstant
2 Zv— X
2v)
Wj (22-2v) d:jldxw
2-2v—v? X

<:>—~12—1n(2-2v—v2):lnx+C
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2

2y

X X

z _ N
@m{x.\/zx 2y Y }zA
X

<:>\/2x2ﬁ2xy—y2 =B

\%:

[\¥]

<:>1nx+lln(
2

o2 -2xy-y' =K

where B and K are constants.

Example 2
ay

Find the general solution of x (2x —y)

which y =0 whenx=1.

Let y =vx

Thendl :v+xgﬁ
dx dx

x{(2x —vx) {v +xd—v} = (x +vx)*
dx

o't (2—v)(v+x92]:1x2 1+v)°
dx
dv 3
= (ZAV)V‘F(Z—V)XEZIJPZV“I“V

o (2—1))x£—i3=1+2v+v2 —2v+y?
dx

= (2—v)xﬂ:1+2v2
dx

2—v
<:>I 14 2v°
c:»j 1+ 2v°

21
2"

dr
dv- | H‘;vz dv:j —+C

4y
1+ 2v?

1 2
E+V 4

d 1
v I &

} = A, where 4 is a constant

= (x + y) * and the particular solution for

substituting the equation becomes

dx )
dv = J —+ ', where C is a constant
X

dv:I ﬁ+C

& 2 tan™ (/Ev)—%ln(l+2v2) =lnx+C

2 2
= ,\[2 tan’] ‘\/_E:_y__ _1 ]n x_._-.'—WZL
X 4 x°
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Whenx=1,y=0,0-0=0+C = C=0

2 2
Particular solution is \/5 tan™ [@} - l m(u@_J =lnx
X

4 x?

Examples for class
Find the general solution of each of the following

(1) b —y) % —y_dr (D 6Pey) % (3 &i—xp) % +2%=0

(4) x[tan[ZD Yy -y tan()—)J =0 (5 b _xty

x ) ) dx x dx Xy

Answers
X i 1 *7
(1) ( } e % = Ax 2) —e’* =4
2y —5x v
(3) (x +y)% = Ax’y (@) cosZ = Ae’
x
yZ
(5) 5 =Inx+C (6) (x? +2xy—yp*)"* = Ax’
X
{7) sinl:i
x x
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MATHEMATICS 2 (AH)

CONTENT

Complex numbers

2.3.1

2.3.2

2.3.3

2.3.4

2.3.5

2.3.6

2.3.7

2.3.8

2.3.9

2.3.10

2.3.11

2.3.13

2.3.14

2.3.15

know the definition of 7 as a solution of x> + 1 = 0, so that i =/—1

know the definition of the set of complex numbers as C = {a +ib:a. b€ R}
know the definition of real and imaginary parts

know the terms complex plane, Argand diagram

plot complex numbers as points in the complex plane

perform algebraic operations on complex numbers: equality (equating real and
tmaginary parts), addition, subtraction, multiplication and division

evaluate the modulus, argument and conjugate of complex numbers
convert between Cartesian and polar form

know the fundamental theorem of algebra and conjugate roots property
factorise polynomials with real coefficients

solve simple equations involving a complex variable by equating real and
imaginary parts

know and use de Moivre’s theorem with positive integer indices
apply de Moivre’s theorem to multiple angle trigonometric formulae [A/B]

apply de Moivre’s theorem to find the nth roots of unity [A/B]

The content listed below is not covered within this support material:

2.3.12

2.3.13

interpret geometrically certain equations or inequalities in the complex plane
eg lzl=1:lz-a|=bilz-1=|z-d;|z-al>b

L]

know and use de Moivre’s theorem with fractional indices [A/B]
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MATHEMATICS 2 (AH): COMPLEX NUMBERS
So far we are unable to solve equations such as x 2=_lorx’+x+6=0.

If we let i = +—1 then the solutions to these two equations are
~1+4-23 1 23i
2 2 2

x=x ¢ and x =

The largest set of numbers that we have aiready met are the real numbers.

Imaginary numbers are of the form bi where b is real, and complex numbers are of
the forma + ib wherea, b € R.

Clearly if » = 0 then R is a subset of the complex numbers, and if a = 0 then the
imaginary numbers is also a subset of the complex numbers. We use C to stand for
the set of complex numbers.

Basic operations on C
Addition: We link the real parts together and the imaginary parts together.

(3+7)+ 4-8)=(7-1)

Subtraction: Similarly we obtain

B3+20)-2-0)=(1+23)

Il
1
—
o~
-t
I3
1
bt
-~
il
—
-
wn
Il
—~
o~

Multiplication: Note that i°

C+)3-4)=6-8i+3i—-4*=10-5;
(4-2)4+2)=16-4i"=20

In general (a + ib)la —ib) =a % + b which is real.

Division: When dividing by a + b we rationalise the denominator by multiplying
the numerator and denominator by a — ib.

4—i  (4=-0)A+2) 6+7i

7
1- 21 (-200+2) 5 I

6
==+
5 5
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Modulus and Argument — The Argand diagram
In general, C can be thought of as R x R where (g, b) represents a +ib,a, b € R.

We can plot (@, b) _
A Imaginary

dAifgizi} 0.4 4 3.5 (3,5)=3+5
0,4) =4
(-3,00=-3
. > {6,-1)=6-14
-3, 0 . Real

(6. -1)

The modulus of a complex number z = x + iy can be defined as being the distance
that z is from the origin on the Argand diagram.

This is written iz‘ and therefore is the distance between the points (x, y) and (0, 0),

which is 4/x* +y° .
Hence ‘z| = Jx*+y* (note: {z‘ = r is always non-negative).

The argument (or amplitude) of a complex number z = x + iy is defined as being the
angle OZ makes with the positive real axis.

. e 4 lmaginary

Obviously there are several such angles differing

by multiples of 2n . If © is the argument then
the principal value for 6 is —m <0 <=x

Clearly tan 6 = 24 x5y

The argument is not
defined forz =0 + 0i. X Real

Example 1

Find »and 6 for z =

z=(—2+2«/§i)2 248—8\5:‘: 1 3.

—— =1

16 16 2 2
lzj=r=/t+i=1andarg &) =0 = g—:rc since tan 6 = +/3 and 8 is in the 3"

(1+i/3)
16

quadrant.

Mathematics: Mathematics 1, 2 and 3 (Supplementary Pack) (AH) 101



Modulus and argument of products and quotients

From the diagram above it is clear that x = r cos@ and y =7 sin@ and hence any
complex number of the form x + iy can be written as r cos® + 7 sin@ =r(cosd +i
sin® ) where r is the modulus and 8 the argument.

Letz=x+iy=r (cos® +isin®)andw=u+iv=s (cos ¢ +ising).

Product zw =rs (cos® + i sinB )(cos ¢ +ising)
=rs (cos® cos¢ —sinB sing +i(sin® cos¢ + cosB sing))
=rs (cos(B +¢ ) +isin(B +¢))

Hence zw is a complex number whose modulus is s and argument is § +¢ .

Quotient z _r(cosB +isinB) _ r(cosB +isinf)(cosp -7 sing)
w s {cos¢ +ising) s (cos® +isinB)(cosd —ising)

_ r{cosB cos¢ +sin sing + ¢ (sinO cos¢ — cosB sing))
s (cos® ¢ +sin’ @)

=T {cos ® —¢) +isin ® —¢))
S

z . . F :
Hence = is a complex number whose modulus is — and argument is {6 -¢ ).
w s

Z . .
In both zw and — the argument would need to be corrected to the principal value
w

range.

These results can be generalised for the product and quotient of n complex numbers,
and can be summarised as follows:-

When multiplying two complex numbers together, to obtain the product,
(i} multiply their moduli (ii) add their arguments

When finding the quotient of two complex numbers,
(i) divide their moduli (ii) subtract their arguments.

The results above easily lead to the following:
o T
i

" = |z|”

Zz

w

arg(iJ = arg(z) —arglw) : arglew) = arglz) + arg(w) : arg (z" =p arg(z)
W

Mathematics: Mathematics 1, 2 and 3 {Supplementary Pack) (AH) 102



Example 2

Findr and 6 forz= (3 + 37 )‘1 . Hence rewrite z in the form a + ib.

To find 7: |3+3i‘:\f9+9zx/1_8
2 =|3+30|= (i8) =324

To find 0 : arg(3 + 3i) = “Z

arg(z) =arg(3+3)* =4x % =x
Hencez=r (cos ©® +isinB0) =324 (cost +isinx)=2324(-1+0i) =- 324

Example 3

Find r and 6 forz= ———"and express z in the form a -+ ib.

)

(3
4i(1—i

To find r- |(/3+i) :]ﬁﬂ'f:f:s

=4 Ja-o2=p-1"= (2 =2 ==
To find 6 arg /3 +¢) =3 arg {3+ =3x%:%
arg(4i):% arg(1 — )2 = 2 arg(1 — ) = 2 x —“Z:_“E

_r T _r_r
e =53 ( 2} 2

{which is within the PV range and requires no correction)
.. s .. I . .
Hencez =» (cos 8 +1isin 8) = 1(cos 5 + i sin E) =100 +7) =i

Conjugates

If z = x + iy then the complex conjugate of zis Z =x —iy.

For example: if (i) z=3+ 2/ then £ =3-2i (i) z=4-5ithen z =4+5i
(i) z=-2then z=-2 (iv) z=4i then z = -4/

There are various simple results which are worth noting about conjugates.
These are stated below, for two complex numbers z and w.
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1
(iti) Rez = > (z +Z) NB Re z is the real part of z.

(ivi Imz = L (z —Zz NB Im z is the imaginary part of z which is real.
(v) z=z
(vi) 7z = ‘zl

{vii) ‘z| =|Z]

All of these results are proved easily by letting z =x + iy and w = u + iv.

A few are proved below.
Dz+w=x+u+ily+v) LHS. =z+w=x+u—i(y+v)
Z=x—ly W=u—iv RHS. =z+w=x+u—i(y+v)

(i) zw = (¢ + ip) w + iv) =xu ~vy +ilev +uy) - zw=xu—vy—ilxv+uy) =LHS.

RHS. =z xw=(x—ip)u—iv) =xu—vy —ixv+uy)

1 1

(iv) RH.S. = ?(x+iy—x +iy) = ?(Ziy) =y =Im(x+iy} =Imz
i i

More complicated problems can be solved using this technique.

Example 4
Show that Re (zﬁ) = é— (zw +zw)

letz=x+iyandw=u+{v 2w = xu + yv +iluy —vx)
zw = (c+iy)u —iv) zw = xu + yv -~ iluy —vx}
Re (6w)=xu+yv =LH.S. %(zﬁ?+5w) =xu+yv=RH.S.

Hence result since L.H.S. = R.H.S.

Equating real and imaginary parts
Result: If x + iy =u +ivthenx =u and y = v.

Proof:x +iy=u +iv = x—u =i{v—y)
But x — is real and (v ~y) is imaginary.
The only number satisfying this is O.

Hencex —u=0andx=u andi(v—y) =0and v =y.
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Example 5
Find all z € C which satisfy z =~+5-12i

Letz=x+1iy
Then (x +iy)* =5 - 12i = x> -y %4 2ixy =512

Equating real and imaginary parts we obtain

xZ_yZ:S and 2xy=-12 = y= 6 andxz_g _ =
X x

> x' o517 -36=0= (-9’ +4) =0

= x*=9 (NB x is real and x > = - 4 has no solution)

= x=+3o0or-3 =>y=-2o0r+2

andz=x+iyis3—2ior—3+2f

Note that a more general method of finding the nth root of a complex number will be

discussed later.

Complex equations

There are two types of complex equation which need to be studied.

Type A involves equations in z and z with complex coefficients.

Type B involves polynomial equations to degree 4 with complex solutions, and real

coefficients.

Type A

Before starting the solutions of this type it is worth noting the following
z=x+1iy Z =x—iy zz =;c2+y2
z8=x—y%+ 2ixy Zi=xt—y?-2ixy

Example 6

Find all ze C which satisfy z® - 27 +2zZ - 12i =0
Substituting z = x + iy into this equation we obtain
22 2, .2, . .
X5y =2 +x 4y iy + 2y~ 12) =0+ 0
Equating real and imaginary parts we obtain

2¢%-2x=0 and 2xy+2y—12=0
= 2tx—1)=0=x=0o0rx=1landy=06o0ry=3
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Example 7
Find all ze C which satisfy 2z°- 2% +4z-2Z +5=0

Substituting z = x + v into this equation we obtain

262 -2y —x Pyl A2+ 5+ iy + 20y + Ay + 2) =0+ 0i
Equating real and imaginary parts we obtain

xz—y2+2x+5:0 and 6xy + 6y =0

= 6ylx + 1) =0 = y = 0 when x is imaginary
orx=-1wheny*=4andy=2o0r-2

Hencez=x+iyis—1+2ior—-1-2i.

Type B

The theory behind this method of solution is that if z is a solution then z is also
a solution provided the equation has real coefficients.

Proof: If z is a solution of the polynomial equation

ax"+a, x" 4. .+ ayx’+ax+a,=0 wherea, e Randxe C (0= <n)

n-1

n-1

then a z" +a, "' +. ..+ a2’ +az+a, =0

Taking conjugates of both sides we obtain

n-1

n 2 __
az"+a, 2" +...+a,z"+az+a,=0

Since a; e R, a,=a, and 0 =0 we are able to rewrite the above as

az' +a, 2" ' +... .+ az +az+a, =0
using previous properties of the conjugate.

But this implies that Z is also a solution to the original equation.
Hence if z is a solution then z also is a solution.
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Example 8

Find all the solutions toz* — 4z> + 11z % — 14z + 10 = 0 given that 1 —{ is a root.

Since 1 +7 is also a root if 1 —7 is, i.e. the equation can be written:

2 47341127142+ 10=z—- 1 =Nz -1 +§) Q@)
=({z-1)+(z-1) -1 Q)
=(z%-2z+2) Qfz)

After dividing the original expression by z 22742, Qlz)=z°—-2z+5.

The remaining two solutions to the equation come from Q(z) = 0.

+./4 -
z2.2245=0= z:i%mﬁz—qzli&'

Hence the four solutions to the equation are

z=1—4, 1+7, 1 +2iand 1-2:.

DeMoivre’s Theorem

We know already that z = x + iy can be written in the form r(cos6 +isin® ).

DeMoivre’s theorem states that forne Nand 0 € R

(cosO +isin0 )" =cosnd +isinnd.

Proof by induction

For # = 1 the result is clearly true, both sides being cos0 + isinf .
Assume that (cos8 +isin0 )" =cosn8 +isinn0 forsomen 2 1

Then
(cos8 +isin® )" ! = (cosB + isinB ) (cosO +isinB)

= (cos n0 +isinnB)(cosO +isinf)

=cos n6 cosO - sin 70 sinB + i(sinn® cosO + cos no sind )

=cos (n+1)0 +isin (n+1)6

Hence the result is true forn + 1.

As the result is true for n = 1 it is true for n = 2.
As it is true for # = 2 it is true for n = 3, and so on.
Hence the result is true for all ne N,
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There are various standard types of problems associated with this theorem.
Some of these are given below.

Example 9
Evaluate (1 -1).

11—i| =42 andarg (1-i) = ——:—J'c
Hencel —i = ﬁ(cos[~ lnjﬂ'sin(— lﬂ: D
4 4

7 1Y (1Y

and {1—-1)' = Sﬁ[cos{——n]ﬂsm(—»—n)]
4 4
= 8«/5 cos[w zn} +isin(— Zn N
4 4
= 8\/5 cos(lnj +i sin(in D
4 4

1 .1
=82 7+15J

=8+8

Example 10

Show that {cos8 — isin® )" =cos n8 — i sinnB for ne N and deduce that
{cosD +isin® )" = (cosB — 7sin0 )" = cos nB — i sinnb

Now

(cosO — isin® )" = (cos(-0 ) —isin(-0 ))"
=cos (-nB) — 7 sin(-#0)
=cosnB — isinnb

In addition (cos® +isin® )" = ——l—m =cosB — isinf
cosf +isint

on multiplying top and bottom by cos® — isind .
Hence (cos® + isin0 )" = (cos® — isinB )" = cos n0 — isinnf .
Example 11

cos30 +isin30
cos20 —isin20

Simplify

c0s30 + isin30 = (cosB +isinf )’
cos260 -7sin20 = (cosO + isin® )?

and the expression equals (cosO + isin0 )

= ¢c0s58 + isin56
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Example 12

Expand (cosO + #sin0 )* and express cos46 and sin 40

sinB

If we write ¢ for cos® and s for sin® we obtain
cosd0 + isind0 = (c + is)*

=c* + 4c is + 6c%7%s" + 4ci’s” + §°
=c* +i4c® s - 677 - dics® + s*
Equating real parts,  cos40 = ¢t -6cist + s?
=t -6t (1-ch) + (1-¢H) ?

= 8cos*® - 8cos®) +1

Equating imaginary parts we obtain
sindd =4cs - 4¢s° = dsc(c? - 59

sin 40
sinf

S0

=4c(c® +¢® = 1) = 8cos’0 - 4cosh

Example 13
Express cos*® in terms of cosine multiples of 6 .

If we letz = cos® +7sinQ then z =z ' =cosf -isinf and z + 7z =2 cosh .

—f

In general, by applying DeMoivre’s theorem to z ” and z

we obtainz” +z7" =2 cosn8 .

We have cosB = % {z +z 1) from above and hence

cos’0 = 1 (z+z )4
16

=L( Y4zl 6z +4z 0 +27Y
16

=—(z%+z N+ —(z%+27H+ —
16 16 16

1
=3 {cos40 + 4 cos26 + 3) using the above statements.
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Roots of complex numbers and roots of unity

We can use DeMoivre’s theorem to find the 2 root of a complex number provided
we know the modulus and argument.

Example 14

If z = - &, find the cube root of z.

Herer=8and 6 = —ln and z = 8| cos —l:c +isin -lcm
2 2 2
. 1Y (1))
z' =2l cosl ——m {+isinl ——x

However we expect three answers to this problem and solving the above will only
give us one answer. We can obtain three by letting the argument be (2n — ) n where

ne Z. This effectively alters the argument from the principal value range by
multiples of 2x .

So z% = Z(COS(Zn *%)J‘E +isin(2n —%)Jt)'%

= 2(cosl3 (Zn - %)J‘E +ising (Zn - %)J’C

We obtain our three answers by choosing any three consecutive values of n.

n:O:z% = 2| cos —lJ'l: +17sin _ln = 2¢is —ln :\/g—i
6 6 6

1 1 .

n:1:23=2czs[—ch=21
2

1 7 .
n=2:z-‘=2czs[gn:J=—\/§—-t
Example 15

If z= é— Zﬁij . find the square root of z.

1
2| =4 =2" arg(z) =5x —%J‘E = _g-ﬁ'li :gn to PV range.

Soz = 2" (cosn +%)3‘[ +isin(n +%):c

and z% = 25(005(211 +§)ﬂt +isin(2n+§)n)%

=32Gost @n+ L +isint Crn+i)n

n=0: 2t =32cis(h =323+ 2i)=163 + 160
n=1: z? =32cis( hn =32(—%\/§—%i):—16\/§—16i
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Example 16
Solve x * = - 1 and hence factorise x° + 1 into real linear/quadratic factors.

1
Deducex?—x* +x%—x+1=(x%-2xcos En + 1 (x%=2x cos mgwfc + 1) and

(Y, (3w 1
hence that sin | — |sin| — | =—.
10 10 4

x2=-1=cos 2n+1)x +isin Cu+l)n

X = CO8 é(2n+l):rc + 7sin é(2n+1)n

1
n=0:x=cis—mx

5
n=1 x=cz’s—3~ﬂ:

5
n=2:x=-1

n=4 :x:cisgﬂz

Sox +1=(c+1){x- cz'sln )(x—cisi:rc )(x—cz'szrt )(x—cz'sgn)
5 5 5 5

1 1
Using the fact that cos 2n = COS 3 7 and sin %ﬂi = - sin s T

1 9 1
(x - cz'sg:r: Yx - cz'sgyc ) reduces to x ° — 2x €os gn +1

x5+1:(x+1)(x2—2xcos;x +l)(x2—2xcos§:r[ +1)
on dividing both sides by x + 1 we obtain
x4—x3+x2wx+1:(x2—2xcos;x +1D)(x®— 2x cos %n + 1)

Letx=1: 1=4(1-cos ln)(l-cos éJt): 165in21 sin23£
5 5 10 10

ivin —1— = sin T sin —3-{2
gvng =S 1o
1 T 3m
NB putting x = - 1 gives —\/g = COS — COS —— )
(NB putting BVE 10" 10
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MATHEMATICS 3 (AH)

Introduction

These support materials for Mathematics were developed as part of the Higher Still
Development Programme in response to needs identified at needs analysis meetings
and national seminars.

Advice on learning and teaching may be found in Achievement for All (SOEID 1996),
Effective Learning and Teaching in Mathematics (SOEID 1993), Improving
Mathematics (SEED 1999) and in the Mathematics Subject Guide.

These materials were originally issued to schools to support CSYS Mathematics.
They have now been updated and matched to the Arrangements for Advanced Higher
Mathematics to be issued as part of the support material being provided for
mathematics.

Tt should be noted that not all of the content of Mathematics 3 {AH) is covered by this
support material. The outcomes covered are Vectors, Further sequences and series and
Further ordinary differential equations. At the start of each outcome a list of the
content covered by the material has been included.
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MATHEMATICS 3 (AH)

CONTENT

Vectors

3.1.1 know the meaning of the terms position vector, unit vector, scalar triple
product, vector product, components, direction ratios/cosines

3.1.2 calculate scalar and vector products in three dimensions

3.1.3 knowthata xb=-bxa

3.1.4 finda x b and a.b X ¢ in component form

3.1.5 know the equation of a line in vector form, parametric and symmetric form

3.1.6 know the equation of a plane in vector form, parametric and symmetric form,
Cartesian form

3.1.7 find the equations of lines and planes given suitable defining information
3.1.8 find the angles between two planes [A/B], and between a line and a plane

3.1.9 find the intersection of two lines, a line and a plane and two or three planes

The content listed below is not covered within this support material:

3.1.8 find the angles between two lines,...
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MATHEMATICS 3 (AH): VECTORS
Revision

Definitions
A vector is an object which has a magnitude and a direction and which is completely
determined by these.

A scalar is an object which has only magnitude associated with it.

From the definition of the vector, it follows that a vector can be represented by a
directed line segment, whose length represents the magnitude of the vector and whose
direction is that of the vector.

The notation a, b, ¢, . . . . is used for vectors.

It is convenient to introduce an object which has magnitude zero and which is not
related to any one direction in space. We call this the zero vector and denote it by the
symbol 0.

The magnitude of a vector a is denoted by ‘a‘ and it should be noted that ‘a\ is a scalar

and also ‘a‘ =20.

Properties

Equality
Two vectors a and b are defined to be equal if they have the same magnitude and the
same direction. 0 5

If ?6 represents ¢ and RS represents b.
Then a = b &PQSR is a parallelogram.

Addition of vectors C

Let OA represent a and let OB represent b
then, if C is as shown, we definea + b to b

be the vector represented by OC . 0 A

It is clear from the figure that the directed segment AC also represents b and hence
we may also define the vector a + b to be the vector represented by the side OC of

the triangle OAC in which « is represented by OA and b by the side AC .
C

a+b
b

A
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Negative of a vector

The negative of a vector 4, denoted by —a, is defined to be the vector with the same
magnitude as the vector a but the opposite direction.

Subtraction of a vector
a - bisdefinedtobea + (- b)

Alsoa+ {(-a) =0
ath=bh+a
a+b+c)=@+bh) +c

Multiplication by a scalar

If a is a non-zero vector and & a non-zero scalar, then the vector ka is defined by the
following rules, giving, in order, its magnitude and direction.

D [eal =¥l
2) the direction of ka is the same as the direction of a if £ is positive and opposite if £
is negative.

AlsoOa=k0=10

Properties

Kla+b) =ka+kb
k+Dazka+la
{(kDa = k(la)

Special case
la=a
-la=-a

Components of a vector
Definition

Vectors v,,v,, . . . .are said to be coplanar if there exists a direction to which
they are all perpendicular.

If v, is represented by oP, v, is represented by OP; elc, then it follows that these
are coplanar & 0P, &’.2, . . . .etclie in a plane.
Let U, ¥V, Wbe given non-coplanar vectors and let » be any vector.

About r as diagonal construct a parallelepiped with edges parallel to the vectors U, V
and W .
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Wehave r =a+b+c

It is clear that these three vectors
a, b and ¢ are uniquely determined by »
and by U, ¥V, W.

b
v
We call a, b and ¢ the components of » W+ /
a
>

in the directions of U, ¥V and W.

U
It is clear that there exists scalars A, U, ¥ such that
a=>U, b=pV, c=yWandsor =2 U+uV+yW.
It is often convenient to take the three given vectors to be K l

(i) mutually perpendicular and
(ii) of magnitude 1 (i.e. unit vectors}

The vectors in this case are usually denoted by i, j, k. i

If the projections of r on i, j and k are ry, r2, r3, we have
r=ri +ryj +13k

It is clear that P is a point with co-ordinates (r1, 72 , r3) In the co-ordinate system
defined by these three mutually perpendicular unit vectors.
We also write r = {r1, 2, 73)

NB Suppose that u and v are non-parallel vectors, then any vector in the plane of u
and v can be expressed in the form A« + uv.

Definition p
Let O be a fixed in space and let P be any point, /
Then if OP =r, ris called the position vector of P

with respect to O. o

The point O is called the origin and has position vector ¢

Section formula

If P is the point on the line determined by the points
A and B such that AP : PB = m : n then

Alr ) Plrs) Blrg)

Fp= (mvry+nr,)

m+n
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Example 1
Find the position vector of P when

P
(1) P divides AB internally in the ratio AP_2
PB 1
P
{2) P divides AB externally in the ratio AP__ ¢
PB 1
1) b6 rp=—(2b+a) =2 (2b+a)
" 241 3
Pip)
Ala)
Pip) 1
(2) Bib) v Fp= (2b—a)=(2b—-a)
2+(-1)
Ala)
Example 2

Ifa=(2,1,-3) and b = (-3, 5, 2), find the components of the vectors a + 3b. Find the

unit vector in the direction a + 3b.

a=1(2,1,-3) 3b =1(-9, 15, 6) a+3b=1(716,3)

la +3b| = 149+ 256 +9 = /314

L @+3p) = (-7,16.3)

+/314 314

Hence required unit vector

Example 3
Find the lengths of the sides of the triangle whose vertices are the points
A(-1,-1,-1), B(2,-1,2),C(2,1,0).

A point P divides AB internally in the ratio AP : PB=2:1.
Find the co-ordinates of P and show that angle BPC is a right angle.

AB=b-a=30, 3):>\Kfi’:«/9+0+9 ~J18 =32
BC=c—b=(0, z,wz):‘ﬁélzw/mztw:\/g:zﬁ
ﬁ:a_c:(—s,—z,—l):>}C7\‘=N/9+4+ =14
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1 1
=——(a+2b)=—(a+2b
P 2+1(a ) 3(a )

2 o ~L1o33
P(p) —306.739)
Ala) =(1,-1. 1)

Hence P is the point (1, -1, 1)

ﬁ’.=p—b=(—l,0,—l):’ﬁ’"=\/§

ﬁuéxc—p=(1,2,ﬁl):>;f’_6‘=\/€

BC=c-b=(0,2,-2)=[BC|=22
— 2 —_ 2 _ 2

Hence [BF| + PC|” =8 =[BC

and so angle BPC is a right angle, by the Converse of Pythagoras.

Example 4
Are the following points collinear? A(1, 2, 3), B(3, 3, 2), C(7, 5, 0).

AB=b-a=(2,1-1)
AC=c-a=(6,3,-3)

Here AC = 3AB
= AC| AB
=A, B, C are collinear.

Example 5
Prove that the medians of a triangle are concurrent and that this point is a point

of trisection of each median.

Ala) Let A, B, C be the vertices of a triangle, with
M) position vectors a, &, ¢ respectively.
N(n) The mid-points L, M, N of the sides BC, CA
and AB in that order have position vectors.
Ce)
B(b) L&

I:%(b+c); mz%(aJrc); n=%(a+b)

Mathematics Support Material: Mathematics [, 2 and 3 (Supplementary Pack) (AH)

121



Consider G on AL such that %f— = %, then

1 1
=—(a+2D=~(a+b+
g 3( ) 3( c)

Consider H on BM such that ﬂ = 2 , then
HM 1

h=%(b+2m)=%(a+b+c)
and if I on CN such that % = %, then

1
i=—(a+b+c
3( )

Thus G is the point on all three medians, this point being the point of trisection.

Example 6
Show that the three line segments joining the mid-points of pairs of opposite edges
of a tetrahedron bisect each other.

A Let A, B, C, D have position vectors a, b, ¢, d
respectively.
If L, M are the mid-points of AB and CD then

1 1
I=—(a+b)y, m=—(c+d
2( ) 2( )

and the mid-point P of LM has position vector

1 1
=—(l+m)=—(a+b+c+d
p=gUrm=—_( )

Now this expression is symmetrical in a, b, ¢, d.

Hence P is also the mid-point of segment joining mid-point of AC to that of BD and
also the mid-point of segment joining mid-point of AD to that of BC, and all three
segments bisect each other as required.

Example 7
ABCD is a parallelogram and E is the mid-point of AB. Prove that DE and AC trisect
one another.

Choose A as origin, so that b= ABis the position vector of B and d = AD is the
position vector of D.

. . - o 1
Since ABCD is a parallelogram, ¢ = AC = b + d The position vector of E is > b

There are two points of trisection of DE and AC. Working out their position vectors,
we find

trisecting AC : %(b+d) and %(b+d) trisecting DE : %d + é b and %b +% d

Hence result.

Mathematics Support Material: Mathematics 1, 2 and 3 (Supplementary Pack) (AH) 122



Examples for class

(1} The position vectors of the points A, B, C, D are respectively. a. b. 3a + b. -a +
2b.

Express in terms of a and b, the vectors AB, AC, AD, BC, BD, CD. Find also the

position vectors of the mid-points of the segments AB, BC, CD, DA and the
centroids of the triangles ABC, ACD, BCD.

(2) ABCD is a parallelogram and a, b, ¢ are the position vectors of A, B, C.
What is the position vector of D 7

(3) Show that the points P,  and R with position vectors p, ¢ and r respectively are
collinear
when (a) r=5p—4q;(b) » =(n+1)p—ng for any constant .

(4) If L, M, N are the mid-points of BC, CA, AB respectively and O is any point,
show that

(i) OA +0B+0C = OL + OM + ON (i1) AL+BM+CN=0
(5) ABC, A ByC, are two triangles and G and G their centroids, respectively.
Prove that AA, + BB, +CC, =3GG, .

(6) Six points A, B, C, D, E, F are given in space. P, Q, R, S are centroids of the
triangles ABC, ABD, DEF, CEF, respectively. Show that P, Q, R, S are the
vertices of a parallelogram.

(7) Suppose O is the centre of a circle AjA2A3 of unit radius in a plane .

If the point B, is the point defined by the vector relation OB: =0A: + as, show
that B, is the centre of the other circle of unit radius in © which passes through A,
and As.

If, further, two other circles of unit radius and centres B> and B3 are drawn
through A3, Ay and A, and A; respectively, prove that the three circles with

centres B, B,, B;s meet at C where OC = ﬁl + ﬁz + &’3.

(8) If the vectors a, b, ¢ have components (2, 1, -1), (-3, 1, 0) and (0, 1, -2)
respectively, find the components of the following vectors: 3a + 26 — 7c, 4a +
5b,3b+7c,at+b-c.

(9) Points A, B, C have co-ordinates (1, 1, -1), (4, 1, 2), (-2, 1, 2).
Find the co-ordinates of the following points:
(a) the point P on AB between A and B such that AB = 3AP
(b) the point Q on BA produced such that AB =3AQ
(¢) the mid-point of CQ
(d) the centroid of the triangle ABC
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(10) The points A, B, C have co-ordinates A(-1, 4, 3), B(2,-1,0),C(5, 2, -3). A
point P is chosen on BC between B and C so that 2BP = PC. A point Q is chosen
on AP between A and P so that AQ = L AP.

Find the co-ordinates of P and Q and prove that PBQ is a right angle.

1 0 |
(IO Ifa=2|,b=|1|,c=| 0 |, find numbers p, g, r such that
0 2 -1
1
patgbh+re=11]|.
1

(12) Which of the following sets of points are collinear ?
(a) (1,-2,5),(2.-4,4),(-1,2,7)
(b)(3,6,1),(9,%9,2), (1,5, 2
(Y (5,1,7.(3,-1,1,(6,2,11)
In those cases where the points are collinear, find the ratio in which the second
point divides the segment defined by the first and third.

(13) The vertices of a triangle are A(3, 1, 1), B(1, 0, -1), C(4, -3, 2). M is the point
dividing BC internally so that BM = £ MC. Show that AM is perpendicular to BC.

Answers
(1) AB=b—a, AC=2a+b, AD=-2a+2b, BC=3a, BD=-a+b, CD=-4a+b
. . . i :
midag = %(a + b), midgc = %(4(1 + b), midcp = 5(2{1 +3h), midps = b

centroids: ABC ga + %b; ACD a+5b;BCD %a + ib
J 3
(Dya-b+e
(3) Proof
(4) Proof
(5) Proof
(6) Proof
(7) Proof
(8)(0,-2,11), (-7,9,-4), (-9, 10, -14) , (-1, 1, 1)
N2,1,0),0,1,-2), -1, 1,0,(1, 1, 1)
(10)P(3,0,-1), Q(0, 3, 2}
(11) p=0,q=r=1
(12)  (a) collinear, — 1 ; (b) collinear, — ; (c) not collinear

(13) M is (2, -1, 0). Hence AM = (=1, -2, - 1), A—M\ -6

A_'B‘=3]

BM =(1,1,1),

“BWI‘:«E,A_B’:(Q,—IﬁZ),
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Scalar product
Definition

If @ and & are two non-zero vectors and #1s the angle
between vectors a and b, then the scalar product of

and b is defined to be the scalar |a/b|cos8 . ]

The scalar product is denoted by a.b
Le. a.b= |a|b|cosd

Alsoa . 0=0.a=0

Properties
(a) The non-zero vectors a and b are perpendicular < a.b =0

byab=b.a
(c)a.a=a’ a’isusually writtena .aandsoa’= \H]2
(d) a{ib)= 2 (a.b) = (ia).b

(e) If & is a unit vector and a is any vector, then

a.u = the projection of vector & on the directed

line defined by the vector u.
Hab+tcy=ab+ac and (a+b).c=ac+bc

(g) fa=(a,,a,,a,)and b=(b,,b, ,b,) thena.b=a b, +a,b, +a.b,

Example 1
i‘=j’=k*=1
Lj=jk=ki=0
Ji=kj=Lk=0
Example 2

Show that r = (r.))i + (r.j)j + (r-k)k
Letr=xi+yj+zk

Then ri=(xi+yf+zk).i= (x(ii) +y(J.i) + z(ki) = x
Similarly rj=y,rk==z

Hence r = (r.i)i + (r.i)j + (r.k)k
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Example 3
If @ and b are vectors of equal magnitude, show that (a — b).(a + b) = 0.
Interpret this result geometrically.

(a—b).(a+b)=a.a+a.b—b.a—b.b=a2—b2= |a|2—|b|2:05ince |a]r»|b|

(a — b) and (a + b) are perpendicular.

Example 4
a and b are non-parallel unit vectorsandc=a + b V3 andd=a- V3b.

If the angle @between the directions of vectors @ and & is the same as the angle

between the directions of vectors ¢ and d, show that 8 = cos™ (— %J .
||’ =¢? =(a+3b)* =a’ +243a.b+3b

We have |a|=|b|=1 and a.b = cos &

Hence |c|2 =4+ 23 cosd

|d|=a® -2v3ab+3b* =4-23cosf

Now c.d = lc“d‘cos@ and e.d=(a+ ﬁb).(a- \/3-’17)=a2—3b2= |a|2 —3|bj2=-
2
Hence c.d = |c| d|cosf =-2

= [e’[d[ cos® @ =4 =(16— 12 cos*0) cos 20~ 4 =4 cos 20~ 3 cos *6- |
=3 cos*@-4cos’f+1=0= (3cos?d- 1)(cos’H-1)=0

= cos’@= % or 1

1
= cost=+ —orzl
3

cos 8=1= =0 = vectors parallel.  contradiction

cos@= -1 = =7 = vectors parallel. contradiction

1 . . .
cosfd= — = c.dis positive. contradiction

3

Hence cos@= b = 6= cos"(— LJ

V3 V3
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Example §
Prove that the vector ¢ = |b|a + |a| b bisects the angle between the vectors a and b.

Find this vector when @ = 2 + 2j + k and b = 4i + 3k.
Let angle between directions of vectors a and ¢ be 8
e Let angle between directions of vectors ¢ and b be 6>

Thena.c=a. (|b|a+ |a|b)=|b|a’+ |a|a.b
=|8||a|®+la||al|b] cos(81+ 82)=|al’|bl[1+cos(8+ 8]

Also a.c = |a||c] cost
Hence [a| |c‘ cosé | = 'a[zlblz[l +cos(d + 83)]

- cosh, = |a | b1+ cos(6, +6,)]

€]

be=b.(|b|la+|a|b)=|b|ab+|alb’=|b||al|b] cos(8,+ 8:)+ la||b!’
=la||b]*[1 +cos(8, + 03)]

Also b.c = |b| |c] cosd,
Hence |b| |c| cosf,= [a||b|2[1 +cos(f + 62)]

la | b1+ cos(8, +0,)]
|c]

> cosf, =

Hence cosé | =cosbr, =6, = &»

Whena=2i+2j+ kand b= 4i + 3k,

|a’=xf§=3and'b| =25 =5

and so ¢ = 5(2i + 2f + k) + 3(4i + 3k) =22i + 10j + 14k
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Examples for class
(1) Find the scalar product a.b where
() a=3i+2j+4kand b=3i-2j - 4k
(bya=2i+3j-kandb=1i+4j+k
(c)a=i+j—kandb=2i+j+k
1
(2) Find two vectors of unit length which make an angle of 45° with | 0
0
0
and are perpendicular to the vector | 0
1

(3) Find two unit vectors which make an angle of 60° with both the vectors

1

and | 0 [.Find also the vectors which make angles of 45° with both the above

-1
vectors.

(4) Find the components of the two unit vectors which make an angle of 45° with

-1 -2
0 | and an angle of 60° with | 2
1 |

Show that these two unit vectors are perpendicular.

(5) The position vectors of the vertices of a triangle are 0, a, b.

Show that its area A is given by the formula 4A° = |a |2 b ]2 -(a.b)?

(6) Which of the following expressions represent vectors and which represent
numbers ?

(i) b.c +ca+a.b; (i) (b.c)a + (c.a).b + (a.b).c,
(1i1) [(b.c).c + (b.a)a]. (b + 2a) ; (iv) (b.c)(c.a).a

1
Evaluate these whena={ 0|, b=
|

b — e

0
Le=i2].
1
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Answers
(D (a)y-11 (b)6 (c)2
Vi Vi WA 0 ! /4

@ | Vo and =) (3)) Y% jand [ % 1,10 and | -2
0 0 % ) \0 —%
_34242 ~3-242

6 6

@ | |and |¥% |, Proof  (5) Proof

34242 3-242
6 6

(6) (i) number (ii) vector (iil) number (iv) vector
(1) 9 (i) da+b+3c (iii) 45 (iv) 4a

Vector product

Right handed systems
Let u, v and w be three non-zero, non-coplanar, vectors.
W Then the system (u, v, w) is called a right-handed
system.
v
The direction of w is that of a right-handed screw from
utov.
u

If (u, v, w) 1s right-handed, then so are (w, &, v) and (v, w, i), obtained by cyclic
interchange.

From now on, we assume that the base-vectors (i, j, k) form a right-handed system.
N.B. (v, u, - w) is a right-handed system.

Definition

(a) Let a, b be given vectors and let ¢ be a unit vector such that (a, b, ¢) is a right-
handed system.

Then if @is the angle between a and b, the vector product is defined to be the
vector |a | b|sin@ ¢

We denote this by a x b, so thata x b= |a | b|siné c
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(b)y [faorbisPorifaisparalleltobthenaxb=10

The vector product @ x b is a vector with

Magnitude : |a | b|siné

Direction : perpendicular to both @ and &

Sense - so that (a, b, a x b) forms a right-handed system.

Properties
(a) a x b = area of a parallelogram with sides determined by a and b.

Proof: (1) trivial ifa x b= 0

2Qaxb+0
Area of parallelogram = 2(area of one trianglie)

b :2(%‘0”b|sinﬁj
= |a Ib‘sinf)
a

Also Laxb|=“a||b|sim9 c| = |a|&|sin@ |¢| = |a|blsind. Hence result.

(byaxb=-(bxa)
We say that @ and b are Anti-commute. axb b

(¢) ka x b =k(a x b)
ka x 1b=kl(a x b)

bxa a
(d)
X|1 j k
i |0 k —j
j|-k 0
kyj —-i 0

(i, j, k) forms an orthonormal set of
vectors

(e) Vector product is distributive over vector addition
ax(bt+cy=(axb)+(axc) (brcyxa=(bxa)+(cxa)
(f) Vector product in component form
Supposea=a i+ a,j+ akandb=Db i+ b,j+ bk
then axb =(ajita,j+ak)yx(bi+b,jt+ b,k)
=a, b{ixi+a b,(ixjy+a b(ixk)
=a,b(fxi+a,b,(jxj)+a,b(jxk)
=a,bkxi)ta,b,(kxj)+a,b,(kxk)
=a b,k-a b,j-a,b k+a,biita,bj-ab,[I
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=(a,b,-a;b,)i-(a, by-a;b)j+(a,b -a bk

_ 192 azi_al asj+az a]k
b, b b, b, b, b
a, a, a;

=|b; b, b,

i j k

Example 1
Ifa=(3,57),b6=(1,0,1),¢c=(2,-1,3), find a x (b x )

10 1
bxe=|2 -1 3| =(+1)i-(G-2)+(-1-0k =i—j—k
A
305 7
axBxe)=|1 -1 —1/=(5+7i-(3-T)+(-3-5k =2i+10j—8k
i j ok

(g)Ifaxb=0,thenu=+ % is a unit vector perpendicular to
ax

{(a plane determined by) aand b .

Example 2
Find the unit vectors perpendicular to both of the vectors & = 2i +j — k and
b=i+3j-2k

The required vectors are + (axb)
|a><b|
2 1 -1
axb=|1 3 =2|=i+3j+5k
i j k

|axb|:\f1+9+25 = /35 Hence unit vectors are i—\—lﬁ—_ﬁ—(i+3j+5k)

(hyaxb=0< aorb="0o0raand b are parallel i.e. b = ka.
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Example 3
Let a, b and ¢ be unit vectors such that @ x b = a x ¢, and b makes an angle of 60°
with ¢. Showthatb—-c==*a.

axbzaxcc>axb-axc=0<:>ax(bc)=0<:>a/14)rb/4

or b— ¢ = ka for some k.

Now |[b—c|'=(b—c)x(b—c)=b>—2bc+c>=|b|" —2|b]c|cos60°+]|c|
=1-2.L+1=1

Henceb—;r:=»’ca<:>Ib—c}2 :k2|a|2<:>1=k2<:>k=i 1
Henceb—c=+ a

Example 4
Ifbxc=cxa=axbz0,showthata+b+c=20.
bxc=cxa<bxc=-axcea(bta)yxc=10

Thus b + a = kc , for some k.

Take vector products of both sides with a.
ax(bta)=axkcs(axb)+t{axa)=kaxc)<= axb=kaxc)

But we are giventhat axb=cxa=-axc

Hencek=-landsob+a=-c, le.b+ta+c=0, ie.at+tb+c=0.
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Examples for class

(1) Find the vector product a x b where
(Qa=2i-j,b=3i+4j (bya=3i-j-kb=i+j-k
() a=i-2j+4k, b=3i+]

(2) Simplity (a)a x 2a+b),; (b)(a+ by x La-b);(c)y{a+b+cyx(b—a-2c):

(d) a. (a x b) [use components if necessary]

) Ha=(2,4,3),b=(3,-6,-3),¢=(3,9,3),d=(1,6,2)
Show that (a x ¢) + (b x d) = 0.

(4) Show that (ra + sb) x (ta + ub) = (ru —st)(a x b)

(5) Leta=1(3,2,-1),b=(1,-1,-2), ¢ = (4, -3, 4). Evaluate the following
expressions:
Max(bxec) (laxbyxc (i)@xbd.{axe) (ivi{faxb).(bxc)
(Vifax{axb)].c.

G fa=G,1,2),6=(00,2,-1),c=(1,1,Dandd=bx(cxa)t{(a.c)a,
Show that & is perpendicular to 4.

(7) Let v be a unit vector and « a vector such thata ., v=10.
Show directly from the definition, thatif b=v xa thenvx b=-a.
Verify this whena =(2,-2, 1) ,v= (‘; <, 1)

3

(8) Suppose that a, b, ¢ are distinct unit vectors such that a x ¢ = b x ¢ and the angle

between a and ¢ 1s 45°. Show that a is at right angles to 4.

Answers
(D(a) 11k (b) 2i+2j + 4k {c)y4i+ 12+ 7k

(2)(a)axb (b)3bxa ()2axb+3exb+exa (d)0

(3) Proof (4) Proof

(5) () -10i +7j+ 16k (ii) 5i— 5k (1)) 20 (iv) 15 (v)20

(6) Proof (7) Proof (8) Proof

Mathematics Support Material: Mathematics 1, 2 and 3 (Supplementary Pack) (AH)

133



Geometry of line and plane
Geometry of the straight line and the plane

Straight line

In order to obtain the equation of a straight line in two dimensions, it 1s necessary to

know two facts about the line:-
(i) a point on the line
(i)  direction of the line

In three dimensions, exactly the same conditions hold for finding the equation of a

straight line.

Any vector, whose direction is the direction of the line itself, is called a direction
vector of the line.

The components of a direction vector of a line are called the direction ratios of the

line, and if the direction vector is a unit vector, then the components are called the

direction cosines of the line.

Example 1
Find the direction cosines for the line determined by the points A(1, -1, 0) and
B(3,2,-1).
2
AB=1| 3 |,
B(@3,2,-1) -1

AB|= 14

AB is a direction vector of the line.

AL, -1,0) 2, 3, -1 are direction ratios

2

} ) . . 1
Direction cosines of the line are + —| 3
-1

The line has direction ratios (2¢, 3¢, -f) for any ¢ #= 0.

Vector equation of the line through the point A in the direction of unit vector
If P is any point on the line with position vector r,

then P(r) lies on the line < AP = | AP |u

& r-r, = tu, for some scalar t

S r=F, tlu

Hence vector equation of line 1s r = r, + 14,
t being a parameter.
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Example 1
Find a vector equation for the line joining the points whose position vectors
are 2{ —j + k and -3i + 2k.

-5
B(-3,0,2) AB=|1 ,‘Kﬁ‘=ﬁ:3ﬁ

A2,-1, 1)
-5
Unit vector in direction of line = ——
3f
1
Vector equation of line isr=2i-j+k+t. —=(-5i+j+ k)

J_

i.e.r:(2—%)i+(—l+3jﬁ] ( }

Suppose with respectto i, , k.
r:(x:yzz): rA :(a: b’ C),M:(l, m! n)

r=r,ttwe(xy z)=(@+ i, b+im, ctin)

2= 2ol (=f) e 2)
{ m n

Equations (1) are called the parametric equations of the line.

Equations (2) are called the symmetric equations of the line.

Notes:
(1) These equations have been shown using direction cosines, but we could have used
direction ratios instead of the direction cosines.

(2) These equations are not unique for any one line, because direction ratios are not
unique.

(3) The line through the point (a, b, ¢) parallel to the z-axis has, according to the
above, the following equations.
x—a y-b z-c
0 0 1
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(4) When finding points of intersection, always convert symmetric equations into
parametric equations, using a different parameter for each line.

Example 2

Find the equations of the line joining the points A(1, 0, 2) and B(2, 1, 0).
1

Direction vector of line = | 1
-2
. . x-1 y z=-2 .
Hence equations of line are I = T =5 ¢, where [ is a parameter.
Example 3
. -4 1 ~5 -3 6
Show that the lines x+3 P A N (=0, Yoo Y2z (=7) are
-7 3 2 3 -4

coplanar.

The given lines will be coplanar < either (i) they are parallel or (ii) they intersect.

4 2
First line has direction vector | — 7 |, second line has direction vector | 3
3 -4
4 2
Since | -7 | @& | 3 |, the lines are not parallel. Hence we must show that they
3 -4

intersect. Any point on first line is (-3 + 44, 4 - 71, -1 + 3¢}. Any point on second line
is(5+27,3+37,-6-47.

The lines intersect < 3 ¢, 7 such that
4t -3=2r+5 2t0-7=4

—-T7t+4=3r+3 & 7t-3r=-1
3t-1=—-4r-6 3t+d4r=-5
2A-7=4

Now ot=1,7=-2
-T7t-3r=-1

Since the third equation is also satisfied by these values the lines intersect (at the point

(1,-3,2).
Hence lines are coplanar.
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Examples for class

(1) Show that the lines

x—-1 y-2 z-3 3 4
3 4 (=1) 3 4 5 =0
coplanar.

(2) Find the symmetric equations and parametric equations for each of the following
lines:
(a) the line through the point A(2, 5, 3) and having direction vector (-2, 4, -3).

(b) the line through the points (-2, -1, 4) and (3, 2, 2).

Find the point in which each of these lines meets the x, y-plane.

(3) Find the value of ¢ such that the line with parametric equations x = 1 + 7,
y=2+3¢t, z=1+c¢t isparalleltothelinex =3+ 21k, y=2+9%,z=15+ 8k
Show also there is no value of ¢ for which the lines intersect.

(4) Find the co-ordinates of the points in which the line L. L;E z-4

= w—3— meets the

surface xy =z.

Answers

(1) Proof

2y(@yx=2-2t,y=5+44,z=3 -3
x-2 y-=35 z-3
2 403
(b) x=-2+5t,y=-1+3t,z=4-2t;
x+2 y+1 z-4
5 3 -2

(3)ce=%

4)(1,1,1),(,-1,-2)

meets x-y plane at {0, 9, 0);

meets x-y plane at (8, 5, )
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The plane
Introduction

We assume that, given any plane, there is a unique direction , said to be
perpendicular to the plane, which is at right angles to the direction of any vector
which lies in the plane.

An Any vector with direction perpendicular to the
J% plane is called a normal vector of the plane.

Vector equation of a plane

We consider the plane containing the point
A(r, ) and with normal in the direction #.
P(r) lies on the plane

& AP is perpendicular to .

& AP -n=0<(r-r,).n=0

Ifr=(x,y,2), ¥, =(a,b,c), n={(I, m, n), then the equation takes the form
x-—a,yv-b,z~c).(l,mn)=0

e llx—ay+m(y—-b)y+n(z—c)=01e Ix+my+nz=la+mb+nc
Le. Ix +my+nz =k where k=la+ mb+ nc.

Hence the equation of the plane is /x + my + nz =%

Notes:

(1) Given the equation of the plane, the coefficients of x, y and z are the components
of the normal vector to the plane.

(2) If the plane passes through the origin, & = 0.

Example 1

Find the equation of the plane through the points A(0, 1, 1), B(1, 2, 0}, C(1, 3, 0).

A normal vector = A—B X E

1 1 11 -1 ]
AB=|11,AC=|2]|. ABxAC=11 2 -1 =i+k=|0
-1 -1 i j k 1

Hence the equation of plane is lx+ 0y + lz=0+0+liex+z=1
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Examples for class

(1) Find the equation of the plane containing the three points (1,0, 1), (1, 1, 1),
(2,1,-1.

x=1 vy x+1

- z-1 .. y z

= —_ = 1) — = — = —
2 3 4 () -1 2 1
It also passes through the point (1, 0, -1). Find its equation.

(2) A plane is parallel to both lines (i)

(3) If  is the line le =7 ; 3 =z _11 , and m is the line through the point (5, 4, 2)
which cuts / at right angles, find equations for m and the co-ordinates of the point
of intersection of / and m.

Answers
() -2x-z=-3
(2) 5x+6y—-7z=12

x—-1 y-96
) —=——=z,;(160
3) 5 7 ( )

Worked examples on line and plane
Intersection of line and plane
Example

Find the co-ordinates of the projection Q of the point P(-3, 2, 6) on the plane n with
equation 2x — 3y —z = 10.

Normal vector = (2, 3, -1)
P(-3,2, 6) PQ is normal to plane
2
= direction vector of PQ = 3

-1

Hence equations of line PQ) are
x+3 y-2 z-6
= = (= 1. say)
2 3 -1

Hence parametric equations are x=-3+2t, y=2-3f z=6—¢
Hence Q lieson planen < 2(-3+26)-3(2-3)-(6 -5 =10
S-6+4-6+9%-6+r=10

<> 141=128

<=2

Hence Q is the point (1, -4, 4)
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Examples for class

(1) A plane passes through the points (0, 1, 2) and (1, -1, 0). It is parallel to the
direction (1, -1, 1). Find the equation of the plane and the foot of the perpendicular
on it from the point (3, 0, 3).

(2) Find the point of intersection of the line with parametric equations x =4 + 1.
y=1-1t z=3rand the plane 2x + 4y +z = 9.

(3) Find equations for the line through the point (3, 5, 2} perpendicular to the plane
5x — 7y + 4z = -2 and obtain the co-ordinates of the foot of the perpendicular on
the plane from the point .

Answers
(D) ax+3y-z=1; (8,22, %)
(2) (1,4,-9)
x-3 y-5 z-2
() =33 8)

Angle between two planes

Definition: - The angle between two planes is defined to be the angle between their
normals.

The cosine of this angle is given by the formula
n .n,

cosf =
|7, |y |

Example

Find the acute angle between the planesx -2y +z=0andx —y =1
1

Normal vector to planex -2y +z=0=| -2
1

1
Normal vector to planex —y = 1=} —1
0

1+2+0 3

Je2 23

&

Let @be the angle between two direction vectors, then cosé =

Thus 6 =

o [
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The line of intersection of two planes

Example

Find the equations, in symmetric form, for the line of intersection of the planes

x—y+3z=2and3x+y+tz=12
We require (i) direction vector of line

(ii) a point on line .

1 3
n=-1|,n=|1
3 1

1 -1 3 —4 -1
noxn,={3 1 1 =-4i+8j+4k=| 8 | =4| 2
i j k 4 1
-1
Hence direction vector for line =1 2
1

We now look for a point on the line at which z = 0.

x-y =2
In this case Y = x=1,y=-1
Ix+y =12

Hence a point on line is (1, -1, 0)
Hence equation of line is 5:1—1— = yTH = %

Mathematics Support Material: Mathematics 1, 2 and 3 (Supplementary Pack) {AH)

141



Examples for class

(1) Two planes (A), (B) each pass through the origin.
-1 y-2 z-
3
the line of intersection of the planesx +y+z=1.2x -y +3z=2.

. 3 .
The plane (A) contains the line ad and the plane (B) contains

Find the cosine of the angle between the planes (A) and (B).

(2) A line L is the intersection of the two planesx + y +z=1,x -2y + 3z =2,
Find the equation of the plane containing L and passing through the origin,

Show that the plane found makes an angle of 60° with the plane y + z = 0.

(3) Find the angle between the planes 3x — 4y + 5z = 10, x — 4y + 3z = 15.
Find also the equation of the plane which passes through their line of intersection
and is parallel to the line x = 2y = 3z.

(4) Find the equation of the plane which contains the first of the following two lines
and also contains their common perpendicular.

xT_lz~y=-z-l;x+l= e =z-3
Answers
(1)2% (D)x+4y—-z=0 3) cos”(% x-4y + 3z = 15
4) y-z=1
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Projection of a line on a plane
Example

Find the equations of the projection of the line ad =y=z—4onthe

plane x + 2y +z =3,

A(5,0,4)

The projection is the intersection of the
planes 7, and 7 ,.

We first find the equation of the plane 7 ,. The normal vector, n, to the plane 7, is

1 3 !
perpendicularto  n, =| 2|, vectora= |1 | and to the vector n, = | 2 |.
1 1 1
31 1 -1 -1
axn,=1!1 2 1|=-i-2j+5=|-2|. Hencen =|-21.
i j k 5 5

Since the point A(S, 0, 4} lieson line L, A is a pointon 7.

Hence the equationof 7, is—x—-y+5z=-5-0+20
le.—x—y+5z=15.

X+ 2y+z =3

Hence equations for projection of L on 7, are .
i Xx-y+ 5z =15

Example for class

(1) Find equations of the projections on the plane 6x — 3y + 2z = | of the line of
intersection of the planes x +y +2z=3,3x + y + 3z =4.

Answers

6x -2 -1 z-1
(M) =i
13 32
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The plane passing through the line of intersection through two planes

Example

Find the equation of the plane passing through the line of intersection of the two
planes x —y + 3z =2 and 3x + y + z = 2 and also passing through the origin.

Any equation passing through the line of intersection has equation
x-y+3z-2+k(@Bx+y+z-2)y=0, for some k
te. (1 +3kx+ (-1 +ky+ G +kz=2+2k

0liesonthe plane <=2 + 2k =0 < k=-1

Hence the equation of the required plane is —2x -2y +2z=0ie.x +y-z=0.

The shortest distance between two non-intersecting lines

=)

Paralle] lines Skew lines

Line of shortest distance is the common perpendicular.

Example

Find the length and equations of the line of shortest distance between the lines

x-6 y-7 z-4

=5 -L]
3 -1 1
x—6:y+5:z-10=t L,
-3 2 4

Any point on L | has co-ordinates (6 + 35,7 —s,4 +5)

Any point on L ; has co-ordinates (-6 —3t, -5 + 2t, 10 + 41)
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—12-3r-3s

3,-1,1 —
P%l PO=| -12+2t+s
L.

6+4t-5s
PQLL, < PQ.(3,-11)=0
(-3,2,4) & 36-H-95+12-2t—-s5+6+4-5={

/Q e -Tr-11s=18 .... (D

PQLL, ©PQ.(-3,2,4)=0
36+ 9f+95-24+ 41+ 25+ 24+ 16145 =0

<209+ T7s=-36 ....(2)
-7t—11s =18
Hence =t=-1,5=-1
29t+7s =-36
and as P is point (3, 8, 3) and Q is the point (-3, -7, 6)
-6
PQ = 15 and’ﬁj‘=x/270:3\/%
3

Hence equations of PQ are = é 3_y-8_z-3
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Examples for class

(1) Find the shortest distance between the following lines and the equation of this line
of shortest distance:
x-3 y-5 z-7 x+1_y+l z+1

k

1 -2 1 7 -6 1

(2) Find the length of and the equations, in symmetric form. for the shortest distance
-3y _z-5 x+2 y+l oz+l
2 13 2 -2
and the coordinates of the points at which it meets the lines.

between the lines

(3) Find the feet of the commeon perpendicular of the two skew lines

x_y+1_ _x__y—2_z+2
2 T2 2
(4) Find the equations of the common perpendicular of the skew lines
x+5 _E_x+2_z_zﬂ~6
1 YT 2 -

and show that the shortest distance between them 1s \/g .

(5) A line L is the intersection of the two planesx +y +z=3 ,x -2y +3z=2,
Another line M is given by the equationsx — 1 =y -2 =z -3,
Find the direction ratios of the line of intersection of the planes joining L and M
to the origin.

(6) Four points in space have co-ordinates A(1, 1, 0), B(3, 0, 1), C(1, 0, 2). D(1. 1. 3).
Find the equations of two parallel planes, of which one contains A and B and the
other contains C and D. Deduce the shortest distance between the lines AB, CD.

(7) Find the equation of the plane through the intersection of the planes 2x -y —z = 2,
3x 2z =5, which is parallel to the line x = % = % Hence deduce the shortest

distance between the line and the line of intersection of the first two planes.

(8) Find the equations of a line with direction vector (1, 2, -3) which meets both the
x -2 y+1 z-3
3 2

lines X=y=z

(9) Show that there are two planes which pass through the line x1‘5 -

and makes an angle of 60° with the plane y = z.
Find their equations.

(10)Find the equation of a line through the origin which meets both the lines with
equations:
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Answers
x-3 y-5 z-17

(1) 2v29; "

x-3 y-4 z-3
2 3 6

(2) 7,(3,4,3), (1, 1, -3);

G (1L 1)& (2, 1,0)
x+3 y+2 z-7
-1 1 1

)L LD
Gyx+ty—z=2,x+y—-z=-1, 3

(7)x+y—z=3;\/§

4)

_y+2 z+2
-3

(9) xty=6andx+4y+tz=06

(8) x+2

X y =z
10)==2==2
03 =1732
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MATHEMATICS 3 (AH)

CONTENT

Further sequences and series
3.3.1 know the term power series

o)

3.3.2 understand and use the Maclaurin series: f(x) = Z—{T FA ()
=0 F:
3.3.3 find the Maclaurin series of simple functions: ¢*, sin x, cos x, tan”'x, (1 +x)°%.
In(1 + x), knowing their range of validity

3.3.4 find the Maclaurin expansions for simple composites, such as e

3.3.5 use the Maclaurin series expansion to find power series for simple functions to
a stated number of terms

The content listed below is not covered within this support material:

3.3.6 use iterative schemes of the form x,,. | = g(x,). n = 0, 1. 2. ... 10 solve
equations where x = g(x) is a rearrangement of the original equation

3.3.7 use graphical technigues to locate approximate solution xy

3.3.8 know the condition for convergence of the sequence {x,} given by
Xpe1 = g(x,), n=10,1, 2, .... and the meaning of the terms first and second
order of convergence
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MATHEMATICS 3 (AH): FURTHER SEQUENCES AND SERIES

Polynomial approximations to functions/power series
Introduction

Any series of the form  a, +a,x+a,x’ +a,x’ +......... is called a power series.

In many cases the sum of such a series gets larger and larger as more terms are added
on. In such a case the series is said to diverge.

On the other hand, some series are such that, as more terms are added on. the sum
approaches more and more closely a particular limit. In this case the series is said to
converge to this limit.

Maclaurin’s theorem
Consider fy=ax’ +bx’ +ex+d A=
Flxy=3ax’+2bx+c f(0)y=c

f" (%) = 6ax + 2b F0)=2b=b=1 /() >b=2 ;(10)
f”’(x):6a f"’(()):éaﬁa_ ‘f”’(O):>a— fm(O)
S"x)=0  etc.

Hence A1y =A10) + L0 o L0 2 L 2 J20) o

This is a particular example of a result known as Maclaurin’s theorem.

Maclaurin’s theorem
Under certain circumstances, a function f{x) may be expanded as follows:

=0+ LO 1 L0 2 SO

Such functions are In (1 +x), e™, (1 + x)*, sin x, cos x, tan Ly

Example 1

Let Ax)=In(l+x) A0)=In1=
f’(x)=:1-; =1
1700 = (H‘i)z £ )=+
)= 0 fx); ) =2
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-6

A (1+ x)*

f”ﬂ' (O) = _ 6

2 3 k)
. . - . . X X X
Substituting in Maclaurin’s expansion: In(l+x)=x- —+—- T +
>

Examples for class

Find the Maclaurin’s expansion for each of the following
(He* (2)sinx (3cosx @ (1+x)* (S)tan 'x

MacLaurin’s expansions of elementary functions

Listed below are the expansions of the above six functions together with their
domain of validity.

The domain of validity of a series is that interval in which the series converges and

should always be considered with the series.

2 3 4
(1)1n(1+x)=x—%+x?—x?+ ........ -1<x<1)
2 3
(2)e*= +Tx—1+%+%+ ........ VxeR
3 5 7
(3)sinx:x—§—'+%-%+ ........ VxekR
2 q &
(4)cosx=1—i(2—~r+%—%+ ........ VxeR
o Iod ala-1)
(5)(1+X) *1+;X+———2*—X oL (-1<X<1)
_1 x° x> x
(6) tan x=x-—+—5—-7+ ......... (-1€x<1)

From these elementary expansions we can form expansions for other functions.
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Example 1

In (1 -x):
x> x x!
In(l+x)=x-—+——-—+........ -1l<x<1
(1+x) >3 2 ( )
replace x by — x
x* x Xt
n(l-x)=-x- ———— — . -l<-xg)ie (-1 < x<]
(1-x) 5 3 3 ( Jle.( )
Example 2
ln(H—x]:
1-x
1n(i+—x] =In(1 +x)—In(1 - x) (-1<x<1)
-x
2 3 4 2 3 4
x* x x x
=Xt ———+ . ... —{-x-————- —
( 2 3 4 )~ 4 )
X x°
=2x+2— +2—+.. ... ...
3
3 5
—o+ ) (-1<x<1)
3 5
Example 3 o
Expand in powers of x, uptox”,e” —2e* +¢ ™~
2 3
e3x=1+3x+9—xr—+27x +. VxeR
2 6
Zex=2+2x+x2+%x3+ ........ VxeR
. 1, 1,
e =l-x+ —x"—=x"+........ VxeR
2 6
Hence e ~2e*+e “=dx?+4x>+ .. ... ... YxeR
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Example 4

Show thatIn | -4 t= Loyl o
2 2778

In (”2" J=ln(1+ex)—ln2

2
:ln(1+]+x+%+....)—ln2

=ln(2+x+%+..‘.)—ln2

2
=ln2(1+§+%+....)—ln2

2

X X
=n2+In(l+(=+=)-In2
n2+hndd+(=+--)-In

2
X

=l (1+(5 + =)

X o x
= { _ - - +_
(2 4) 2
x o xt x
==+ — -— F ...,
2 4 8

2
X x
==t — 4. .. ...
2 8
Example 5

2
Find the coefficient of x° in the expansion of ﬁ:—_x_ .
e

_ 2 2 3 4 5
I3 x i C3xaxde S =(l-3xtxd)(lox+ X X o
e’ 2 6 24 120

2 3 4 3 3 4 5 4 3
ey XXX X 4 a2 3 X X e s X X

2 6 24 120 2 2 8 6

9x® 8x’  25x' 3x°
=1—-4x-+ — + — o

24 10

. 5 3

Coefficient of x =-E.
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Example 6

Showthat(l+x)x—1+x2-%x3+§x4+ ...... for-1<x<1.

We use the fact that flx)=e™/® =in¢e/™

=e
3 4 5 3
=1+(x2--——+x?—xT )+%(2 %)2+1(x2)3+
x3
=1+x2-—2—+—x4+ for —1<x<1
Example 7
Expand In (1 + sin x)
x3 3
In(1+sinx)=In{1+x- —+ -
( y=In(1+( s 120 )
©  x I ., 1 i
=x-— -—(x-— —(x-—) +.
( 6 120) 2( 6) 3( 6)
=x-—x2+—x3+ix5+ ........
6 120
Example 8
1 1
Expand and
1+x 1-x
1 -1 23
=(1+x)" " =1—-x+x"—x"+....
1+ x
;=(1—x)_l:1+x+x2+x3+....
l-x
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Examples for class

(1) Find the term in x* in the expansion of e* (1 + 2x).

3—dx—x*

X

e

(2) Find the coefficient of x % in the expansion of

(3) Find the term in x° in the expansion of e * (1 - 3x).

(4) Find the coefficient of x ¥ in the expansion of (™ - 1)(x? = 2x - 1).

(5) Write down the power series for In (1 —x).
3

By writing 1 +x +x? in the form , showthatfor—1<x<1,

1-x
In {1 +x+x2)= erlx2 —zx3~1-lx4 +l;>cS —lx6+ ......
2 3 4 3

(6) Expand In (1 + sin x) as far as the term in x*.

(7) a) If f(x) = cos* x, show that f'(x) = - sin 2x . By finding higher derivatives

obtain the Maclaurin series for cos® x up to the term x .

.. 1 : :
b) By writing cos Zx= 5 (1 + cos 2x) and replacing cos 2x by a suitable power
series obtain the expansion of cos x up to the term x °.

(8) Expand e **" as far as the term inx ° .
(9) Expand e 2*3 as far as the term inx ¢ .
(10)  Express (1 +x)' "*in the form /" and deduce the result

(lﬂl-x)lﬂc—1+x+x2+%x3 +....

X

(11)  Expand as far as the term in x * .

e’ -1

(12) Showthatln(1+e*)=In2+ lx+lx2 ——l—x4 +
2 8 192

(13)  Find the power series for In(1 —x — 2x? ) as far as x °. Give the domain of
validity.

(14) By expanding (1 +x) ' and integrating the resulting series, show that

2 3
X

X
n{(+x)=x- —4+— +....
( ) > 13
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Answers

9x* 19x° Tx° x4
1 2 3) - — 4y 2
()24 ()240 (3) 50 ()8
2 3 4
G In(l—x)=-x- =T
x2 x3 x4
6) x——+——"—
(6) x 2 6 6
4 2x6
Ty (a) cos?x=1—x>+- -2
(7} (a) T
4 4]
(b)Coszx: l(HCOSQJC) 1*x2+L—£
2 3 45
B) 1 +x+ x? o2y
12 36

5 1 2
(9) 381+55x+27x“ %——6)63 +=x*
8 3 3

(10) Proof

120
120 +60x + 20x” +35x* +x*

(1D

(12) Proof

(13) -1<x<-0.375; —x—%xz *%f —4x* —4x°
(14) Proof
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MATHEMATICS 3 (AH)

CONTENT J

Further ordinary differential equations

3.4.1

343

3.4.4

3.4.5

3.4.6

3.47

solve first order linear differential equations using the integrating factor
method

know the meaning of the terms: second order linear differential equation with
constant coefficients, homogeneous, non-homogeneous, auxiliary equation,
complementary function and particular integral

solve second order homogeneous ordinary differential equations with constant
d’y

coefficients a -

dy
+b—+¢cy=0
dx Y

find the general solution in the three cases where the roots of the auxiliary
equation:

(1) are real and distinct

(11) coincide {are equal) [A/B]

(iii)  are complex conjugates [A/B]

solve initial value problems

solve second order nen-homogeneous ordinary differential equations with

2
constant coefficients aix—f + b% +cy = f{x) using the auxiliary equation |

and particular integral method [A/B]

|

The content listed below is not covered within this support material:

342

find general solutions and solve initial value problems
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MATHEMATICS 3 (AH): FURTHER ORDINARY DIFFERENTIAL
EQUATIONS

Linear

In this case, the equation takes the form % + P(x)y = Q(x), where P(x) and Q(x) are
x

expressions in x.

To solve this type of equation, we have to multiply all terms by a factor called the
integrating factor, detailed by u (x), which converts the whole of the lefi-hand side

into the derivative of one function.
dy
Hence o + Py = Q(x),

& 40 % FPO) Gy — p () QW)

We choose u (x) such that di( M) =Px)y u(x)
x

. 1 d _
(= m E(ﬂ(x)) P(x)

ie. di(ln( 1)) =P
X

ie In(u(x))= IP(x) dx +C where C is a constant.

[Poodec _ eJ’P(x)cix o C= AeIP(x)dx e

ie. g(x)=e ,where A=e

We choose A = 1 and obtain as integrating factor z (x) = RIS

Hence equation becomes u (x) Z—y + g—[ px)]y= px) QHx)
x X

e, L4 = 409 Q)
Le. g(x)y= _[,u (x) Q(x) dx + C where C is a constant

ie y= eiIP(xm J‘ejp('wr Q(x) dx + C.

Example 1

Find the general solution of d + 2=
de  x

1 jldx In
HereP=—= ux)=e~* =¢""
x

- X
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Multiply both sides of the equation by x.

dy d
X— +ty=x o —(xy)=x
e T dx (xy)
2
Sxy= % + C, where C is a constant
Soy= y ¢ - General Solution
2 x
Example 2
dy 3

Find the general solution of xa tx-2y=x

dy 3 dy (X—zJ 2
X—+tx-2)y=x" & — + =X
o =2y = |

)
X — 2 2 J‘(l_% s x—2Inx vl o
oA =g =

Multiply both sides of the equation by Lj er
NE

1 . ady s X—2 x dal 1l ., x
— ¢ — tet —— y=e < e =e
x? dx x’ 4 x| x* 4

= Lz e*y=e*+ C, where C is a constant

x

oy=x’+Cx?e " - General Solution
Example 3
Find the general solution of ng -2y=6e "

x
HenceP=-2= ufx)= ej_m =g

Multiply both sides of the equation by ¢ =

,hd_y Qe
dx

e y=6e¢

d _ _ _ .
@a{e 2)‘y]=6e ¥+ C, where C is a constant

e Py=2e F+C

o y=2e  +Ce*
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Examples for class

1) x+1) % = 1)

(2) L -ytanx = sinx cos x
dx

dy
3)tanx - + 2y =x cosec x
(3) T

dy 2y
4 24 =X =y
()dx 1—x’

() (1+x2)d—y+xy:1
dx

x+1 x
y=e

© 2+
(7) (1 —x) 4 +xy=(1-x)e"
dx

dy
8y = +y=5cos2x
()dx y

Answers
(Dy=x"+x+Cx+C (2)y=—lcoszx+
3 COS X
() y=—tos S5, € (4)y:[1‘—" (x-12? +0)
sinx sin“x sin®x 1+x 2
5) y= x+C; (6) y:lxe”‘ +(Cxe™
1+ x 2

1 Ce™®
N y=—=(1-x)e" +
(7) ¥ 2( x)e "

(8)y=cos2x+2sin2x + C
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Further differential equations of first order

Example 1
Find by using the substitution z = y2 , the general solution of the
differential equation @ P
dc x y
z=y?
dz _d , » dy
= —=— =2y =
&PV
Y _1 &
x 2y dx

Substituting equation becomes
1 dz LY 1

2
a2y,
dx x
dx x
2
HEI’EP= 2 = #(x): e'[de :ezlnx:einxz :x2
X

Multiplying by x? , equation becomes
d

2 Z =252

dx

@i(xzz):sz
dx

2 .
o xtz=2x4C , where C is a constant.

C
@Z:*)C‘«""""i'
X
C
x_z

;2
=V =§x+

- General Solution
Examples for class
(O x j—y +y =y2 Inx(putz= l) and the particular solution of which y = 1
X y
when x =2,

d i
2) xéi— +y=x%"*(putv=y7)

(3) % - 26x 1 y= 2x° J; (put z :J; ) and the particular solution for which y = 4
X+
when x = 0.
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Answers

(1)i:x21nxﬂ-x2+Cx, l:lenxﬂxz+%x—2xh‘12
Yy

(2) i3 =—x"+Cx’
y

(3)\/} =2(x2 + D + 202 + D+ Cx? + 17, \/} =20 + D2 +2(x7 + D =2(x* + )"

Differential equations of the second order

Homogeneous linear equations

A homogeneous linear equation of order 2 is one of the form
d’y ., &

—;{x—2+PE + Qy =0, where P, Q are real numbers.

Suppose y = » and y = v are particular solutions,

2 2
Thenfi-—z‘ P ou=0and ¢ 4 ¥ gv-0
dx dx : dx

It can easily be shown that y = Au + By, where A, B are constants, is also a solution.

We now look for solutions of the form y = ¢ ™ then —?i =De™ i
X

andsoD%e™+PDe™ +Qe™ =0
ie.e™(D?+PD+Q)=0
ie. D*+PD+Q=0 -(1)

~ I o) and a; are solutions of the equation D 2+ PD+Q=0then ¢** and ¢** are

solutions of the differential equation and y = Ae™" + Be™" , where A and B are
constants.

Equation (1) formed from the differential equation by replacing the derivatives by Ds
of the appropriate orders is called the Auxiliary Equation.

Using the formula for roots of the quadratic equation.

— Pt P-4
D= 5 L and we obtain the following three cases:
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L P* > 4Q , the roots are real and unequal .

The general solutionisy=Ae """ +Be "

IT p’= 4Q and the roots are equal D =D, = D, say
The general solution is y = ¢ ™ (A + Bx)

I P?<4Q, the roots are imaginary and unequal

ie. D= i;i ig,whereBz 40 - P?

Ly .
then the general solutionisy = e* {Acos £x+ Bsin £x}

Example 1

2
smvez—f+% -6y =0
X

Auxiliary equation isD*+ D~ 6=0
<SD+3D-2)=0
< D=-3o0r2

: -3 2
< .. General solutionisy=c,e” "+ ¢,e™, where ¢, and ¢, are constants.

Example 2
2
Solve d ’; +4d—y +4y=0
dx dx

Auxiliary equation is D2+ 4D + 4 =0
<D =-2, twice

~.General solution is y = e = (

¢, + ¢,x) where ¢, and ¢, are constants.

Example 3

2
Solve % +22x—y +5y=0

Auxiliary equation is D*+ 2D + 5 =0

—2 44— —2+4/- —2+4i
-D- 2_\2/4 20 _ 2_2\/ 16 _ 22_4z:_1i2i

. General solutionis y=¢ * {A cos 2x + B sin 2x}, where A, B are constants.
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Examples for class

Type 1

d*y . dy d’y d d’ dy
1 S35 +2y=0 42 +3y=0 (3 +52 46y =0
()dx2 S T ; dxay (s)dx2 n Y

2
(4)2‘”’ 0% yop=0 (592 3L g
dx dx dx

Type 2

d2 i d’y «d dy i

+4y=0 60— +9=0 (34— +4— +y=0
dx i p Py Y= (3) 7

d’y _dy d'y dy |
HEL 62 +9y=0 (5 +2nE +nty=0
()dxz . T ()dx nes vy
Type3

d*y dy d’y dy dy dy
1 +2= +2y=0 2m+4 +8=0 (38— +4—= +y=0
()dx T (2) Y (3) e

2

(4)d§’+6dy+13y 0 L AN

dx dx dx*  dx
Answers
Type 1:

(1} y=dAe™ + Be"  (2)y=dAe™ + Be*

4y y=Ae> + B (S)y=4e +B

Type 2:
(1} y = e*(4 + Bx)

(&)Y y=¢e"(4 + Bx)

(2)y=e*(4 + Bx)

Type 3:
(1) y=e (Acosx+ Bsinx)

Ly 1 .1
3 =e* " (Acos—x+ Bsin—x
(3) y ( 2 1 )

() y=Ae* + Be™

(3)y=e>*(4 + Bx)

(2) y =e’*(Acos2x + Bsin2x)

(4) y =e*"(A4cosdx + Bsindx)
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Non-homogeneous equations of the second order

2
These equations are of the form au +b— b

Tro=f@ -0

In most cases f(x) will be a simple polynomial, or an exponential, or a sine or cosine
or some combination of these.

We shall make use of the following theorem.

Theorem

If y = f1(x) is a particular solution of (1) and y = G(x) is the general solution of the
corresponding homogeneous equation, then y = G(x) + f1(x) is the general
solution of (1).

Proof

2

¥ =/1(x) is a particular solution of (1) < @ aic filx)y +b —f(x) + ¢ filx) =f(x)

y=G(x) is general solution of homogeneous
2

Sa %G(x) +b %G(x) +cG)y=0

For y = G(x) + f1(x)
dy

g“—G( )+—f1(x)

d’y d(a’y} d{d d ] o d

-~ | G(x —_— = m._;.(j +__L__T ¥

il ol el Beul L R A ) Rl T E v A6
dy+bdy

d2 2
~a<> G+ aj A+ 526+ b )+ 6 + of ) =/ )
Hence result.
We call G(x), the general solution of the corresponding homogeneous equation, the

complementary function (C.F.} and {(x), the particular solution of the non-
homogeneous equation, the particular integral (P.1.)

Then y = C.F. + P.1. is the general solution of the equation.
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Example 1
2

Find the general solution of % +4y=-dx’+2
X

Consider homogeneous equation first.
Auxiliary equationisD? +4=0<D=+2i=0+21

. CF.isy=e"" (A cos 2x + B sin 2x) = A cos 2x + B sin 2x, where A. B are

constants.

For particular integral, we try a function of the same form as R.H.S. of equation.

Here wetry y=c¢,x°+ ¢,x+ c, as solution of equation.
Then y'=2¢x+ ¢, and y" =2¢,

Substitute in equation, 2¢, +dc x* +dc,x+4de, =-4x7+2
odexi+ac,x+(de, +2¢)=-4x2+2
<de,=-4,4c, =0,4¢c, +2¢, =2

<=, =-1,¢,=0,c,+1 Plis y=-x"+1

Hence general solution is y = A cos 2x + Bsin 2x - x> + 1

Example 2

2
Solve d f +Q -6y=2e"
dx dx

Auxiliary equationis D*+ D —6=0

< D+3)D-2)=0=D=-3or2

—3x 2x

S CFiasy=cie ™+ ¢, e ,where ¢, , c, are constants.

ForPl. tryy=Ae”, then

y =Ae’ and y" =Ae”

Substitute in equation, Ae*+ Ae*-6Ae*=2¢"

&-dAet=2e"

< -4A =2

S A=- %

S Plisy =- 1 e”
2

General solutionis y= c¢,e” ¥ + ¢
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Example 3

Solve d—f +2@ +5y=10cosx
dx dx

Auxiliary equationis D? +2D +5=0

", Y — 24— — 2+ 4§
D= 2_24 20: 2_2 16: 22_4t—-1i2i

. CF.isy=e " (¢, cos 2xt ¢, sin 2x)

For Particular integral try y = A cos x + B sin x , then

v =-Asinx+Bcosxand y" =-Acosx—Bsinx

Substituting in equation gives
-Acosx-Bsinx-2Asinx+2Bcosx+5A cosx + 5B sinx =10 cos x
< cosx(-A+2B+5A)+sinx (-B-2A+5B)=10cosx

< cosx (4A +2B) +sinx (4B -2A)=10cos x

4A+2B=10 «xI 4A +2B=10
=

< = 10B=10,ie. B=land A=2
-2A+4B=0 x2 -4A+8B=0
S Plisy =2cosx+sinx

General solution isy =e™ " (¢,cos 2x+ ¢, sin 2x) + 2 cosx + sinx

Example 4

2

Find the general solution of +4y=e'- 2sinx +x

2
X

Auxiliary equationis D2+ 4 =0

<D=+ 2

- CI.isy= ¢ cos 2x+ ¢, sin 2x

ForPltry y=Ae” +Beosx+ Csinx +Dx + E, then

Yy =Ae*-Bsinx+Ccosx+D

and y" = Ae”-Becosx-Csinx

Substituting in equation gives

Ae” -Bcosx-Csinx+4A e” +4Bcosx +4Csinx +4Dx+4E=¢” - 2sinx +x
«<>5Ae" +cosx(-B+4B) +sinx(-C +4C) +4Dx+4E=¢" - 2sinx +x

&5A=1,3B=0,3C=-2,4D=1,4E=0
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<:>A=l,
5
. 1 2
.‘.P.I.1sy=—ex-—smx+lx
5 3 4
. . I . 2 I
General solution is y = ¢, cos 2x+ czsterge —Esmx+—x

Examples for class
Find the general solution of the following differential equations

Type 1 Type 2
TP AN W © 4 2@ 5y 106
dx’ dx dx’ dx
dly dy dy 2
2 - y=2-5x Nd—=+12—= +9y=Te¢"
dy dy 'y dy
3 +320 42y =4A(x+ 1 8—-—-2:Jr
(3) o Y (x+1) (8) e
2 2
(4) d—f+5d—y+4y=32x2 (9)d s o T 2e o
2y dx
d’y . dy 2
() SE A2 A y=lex
Type 3 Type 4
dy 3dy +2y=sinx (15)d5+4ﬂ +4y=x-0 -
X : dx
2
dy d—y+y— sinx—2cosx (16)d—f}+gz-6y=€x+e'x
dx dx* dx
2
dy dy = 10 cos 2x (17) Zx;"+ LA
2
(13)4‘;6 +y= dsinx (18)4ix—y+4il +y=e*-2cos 2x
(14) y+82:y +25y = 26 cos 3x dy 3D oy=2ie
x
dy 6zy+9y=ex+sinx
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Answers

(1) y = Ae’ + Be* +lx3 +ix2 +'—2Ex+@—
3 3 9" 27

(2) y=Ade™ + Be" +5x -2

(3) y=Ae™+ Be™ + 2x -2

(4) y=Ae™ + Be” + 8x* — 20x + 21
_ 1

(5} y = e*(Acos x + Bsin x) + Exz -x+1

(6) y = e + Be™ + 2¢&

Ny y=e " (A+Bx)+Te ™

(8) y=dAde™ + Be™ + %e"
©O) 3= (d + Bx) + e
2 . 3 1 .

(10) y=Ae” +Be™ + —cosx+—sinx
10 10
x . 2 3.
(11)  y=e"{AcosZx + Bsin 2x) + Ecosx—ﬁsmx
« 6 g .
(12) y=e(4+ Bx) ——5-0052x—§sm2x
1 ! 4
(13) y= Acos—x+ Bsin—x——sinx
4 4 3
(14)  y=e"(4cos 3x + Bsin 3x) + -;—cos 3x + %sin 3x
(15)  y=¢e(4 + Bx) L 1
d 6° "4
1 1
16 =A4e+Be”™ ——¢" ——e "
(16) y 7% 7%

1 1 i
17 = ¢ (Acos 2x + Bsin 2x) + —x — —e* — —
(7) y= e {deos 2x DTG e
i, 1 30 16 .

18 =e¢ P (A+Bx)+—e" +—cos2x -——sin2x
(18) v (=Bt ge+ e 289

(19)  y=de™+ Be" + %e"‘ +1

(20)  y=e(4+ Bx)+ %e* 2 cosx b sinx
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If terms in particular integral already appear in C.F. we throw in an x.

Example 3
d’y

Find the general solution of —=- -y =2¢"

Auxiliary equationis D~ 1 =0 D+ 1)}D-1)=0c= D=1 |
S CFisy=ce*+ ¢, e, where ¢, , ¢, are constants.

For P.I try y= Axe”, then
¥y =Ae ' +Axe and y" =Ae "+ Ae"+Axe"=2A "+ Axe”

Substituting, equation becomes
2A e+ Axe” - Axe = 2e”
S2Ae"=2e"

S A=1

S PlLis y=xe”

Hence general solutionisy=c,e*+ ¢, e " +xe”

Example 6
. . . d'y dy
Find the general solution of the equation —=- + 2 — + 5y = 5x + cos 2x.
dx”® dx
_ + fd . + ;
Auxiliary equationis D*+2D+5=0 = D= 2+ v4-20 = 214 =-1x2i

2 2

For P.1. try y = (A cos 2x + B sin 2x) + Cx + D, then
y' = -2Asin2x+2Bcos2x+Cand y" =-4A cos2x — 4B sin 2x

Substituting, equation becomes
2C+ 5Cx+ 5D -4A cos 2x - 4B sin 2x - 4A sin 2x + 4B cos 2x
+ 5A cos 2x + 5B sin 2x = 5x + cos 2x

<> (A +4B)cos 2x +sin 2x(B —4A) + 5Cx + 2C + 5D = 5x + cos 2x
<& A+4B=1,B-44=0,5C=5and 2C+5D =0
2 1 4

& C=1,D=-2,4=—,B=—
5 17 17

. 1 .
Pl isy= — cos2x + 4 sin 2x +x - 2
17 17 5

. _ . 1 4
General solution is y = ¢~ "(A cos 2x + B sin 2x) + T cos 2x + — sin 2x + x -

| o
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Examples for class

Find the general solutions and any particular solutions mentioned.

d’y dy

(l)dx +32 +2y=2"+1
A i
(3) ‘ixf;" D oigyaner
d’y dy 5 _
(4) —35 dx -2y=x
2
(5) g——’l—) + 2d_y + 2y = sin x , and the particular solution for which y =0, & _ 1
dx dx dx
when x = 0.
2
(6) ix— +6 jy + 25y = 30sin S5x, and the particular solution for which y=(, v
when x = 0
2
(7) d—g} A 6y =5 e**, and the particular solution for whichy =1, Y -6
dx dx " dx
when x = (.
d2 dy .
8) — -3—=— +2y=S5sinx
( ) R
y dy +2y=x+sinx
2
(10) 2;1 + 5y =x+ cos 2x
y dy +8y=x+ e’
af2 dy .
(12) — dx - 6y = 8¢” — 50 sin x, and the particular solution for which y = 0,
Zy 1 when x = 0.
x
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Answers

(1) y=de™ + Be™ +x* —3x + 4
(2) y=Ae>* + Be™ + 3xe’®

(3) y=Ae™ + Be* - xe*

1 1
4yy= Ae™ + Be* ~—x~=
4y >¥ 77

. 1.
(5) y=e"(4cos x + Bsin x) —%cosx+§smx;
o2 3. 2 l .
y=¢(—cosx- =sinx) ——cosx+—sinx
5 5 5 5

(6) y= e’ (4cos 4x + Bsin 4x) — cos 5x; y = e (cos 4x — % sin 4x) — cos Sx
(7) y=Ae™ + Be ™ +xe™; y=-e" + 2 + xe™

2x X 3 1.
(8)yy=4Ade” + Be' + Ecosx+§smx

(9) y=e"(4dcosx + Bsinx) + 2cosx +%sinx+ ler%
5

(10) y=-e"(Acos 2x + Bsin 2x) + Lcos2x +isin 2x+ lJc L2
17 17 5 25

1 1 3
11 =A™+ Be®™ - —xe' + =x+ -
(- R D

(12)  y=Ae™ + Be* +cosx + Tsinx - &
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Further types of second order differential equations

Example 1
. - - . : 2 dgy o) dy — oy
Find the general solution of the differential equation x e + Jx; +y=sin (In x)
X" X

We must transform this equation into one with constant coetficients.
We do this by the change x =e".

d_yzd_y iit_:_l_.gy_ :e"ld_y
de dt de e dt dr
dzy:iIZQ:i i(dy] ﬂ:_d_, ( "dyJ -1 [ -rdy+ .'dzy:| -1
dx®  dx| dx di \dx) dx dt dt dt dr’
f21d_2y o, dy
dr’ dt

Substituting, equation becomes

2
e {e'z’ ay yﬁe'z’d—y} +3e'.e! % +y=sin(lne’)

dr’ dr
d—_f @ +3d_y +ty=sint
dt dt dt
2
@d—g) +2d—y +y=sint
dt dt

Auxiliary equation isD*+2D+1=0= D+ DN?=0oD=-1,twice
CF. isy=c e '+ c,te”’, where ¢, and ¢, are constants.

For P.I. try y=A cos 7+ B sin 7, then
y =-Asint +Bcost and y’" =-Acost—Bsint

Substituting, equation becomes

-Acost—~Bsint+2(-Asint +Bcos#)+Acost+Bsins=sin¢
S -2Asint +2Bcost=sint

< -2A=1,2B=0

SA=- 1 ,B=0
2

L Plisy=- % cos ¢

. - 1
General solutionisy=c, e "+ ¢c,te - = cost x=¢e'
thent=Inx
. ¢ ¢ 1 1 :
ie. y=—L+2lnx- = cos(lnx) and — =¢ '
x X 2 x
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Examples for class

Find the general solution and particular solution where required of

d’y dy 1

1) x° +a4x 4+ 2y=—

(1) x dx’ dx Y X
2

(2)x2—i,xg} +y=4x

2
0 2L D gy e ()’
X

2
d
(4) x? % +x d_y - 4y = x? and the particular solution for which y = - =0
x

&

1
8 2

whenx=1.

dZ
(5) (1 -xz)dx_g} +x%+ n2y=0 (Put x = cos ¢)
¥

2
(6) (1 ~x2)fix—f’ -xz—yw: x* (Putx =sin/)
- X

Answers

(Hy= i2+£+llnx
X x x
(2) y= x~%(A cos(%ln x)+ Bsin(-‘?— Inx)) +4x

(3) y=Ax"+ Bx —lxlnerl(lnx)2 +zlnx+Z
3 2 2 4

B 1 1 1
Hy=4+ =+ —x’lnx;y=——x’+—x"lnx
@y 2 a YUY

(5) y=Acos 2n(cos"x) + Bsin 2n(cos'1x)
(6) y = Acos(sin” x) + Bx — x* - 2
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