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MATHEMATICS 2 (ADVANCED HIGHER)

Introduction

These support materials for Mathematics were developed as part of the Higher Still
Development Programme in response to needs identified at needs analysis meetings
and national seminars.

Advice on learning and teaching may be found in Achievement for All (SOEID 1996),
Effective Learning and Teaching in Mathematics (SOEID 1993), Improving
Mathematics (SEED 1999) and in the Mathematics Subject Guide.

These notes are intended to support teachers/lecturers in the teaching of Mathematics
2 (AH). The resources referred to within the material are:

Understanding Pure Mathematics,
AJ Sadler and DWS Thorning, O.U.P., 1987 ISBN 0-19-914243-2

The complete A Level Mathematics,
Orlando Gough, Heinemann Educational Books, 1987, ISBN 0-435-51345-1

Mathematics In Action 6S,
John Hunter, Nelson Blackie, ISBN 0-17-441027-1

In these notes these texts are referred to as Sadler & Thorning, Orlando Gough and
Hunter respectively.
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FURTHER DIFFERENTIATION

CONTENT

know the derivatives of sin'lx, cos’lx, tan"x

differentiate any inverse function using the technique :
y=f1w =10 =x= ¢'®) /() =1etc. and

1
know the corresponding result % ==

dy

Comments

The derivatives of sin"x, cos™x, tan”'x were contained in CSYS Paper 1. The rest of
the content is new although the techniques may have been used to find the derivatives
of inverse trig functions.

Teaching notes

FINDING THE DERIVATIVE OF AN INVERSE FUNCTION

In Mathematics 1(AH) the relationship between the graph of a function and the graph
of its inverse (i.e. the graph of £ ' (x) is the image of the graph of f(x) under reflection
in the line y = x) was established. This provides a means of investigating the
derivative of an inverse function.

The diagram below left shows the graph of some function y = f(x) and the tangent at
the point (x, y). The diagram below right is a reflection in the line y = x of this
diagram showing the graph of the inverse function and the tangent at (y, x).

Ax
yA
y=f&) x=/"0)
(x, y)
/ (,x)
> — 0 >
/ x Y
)
For y = f(x), the angle between the tangent and the positive direction of the x-axis is 6,
i.e. the gradient of the tangent is tan6, i.e. g!— = tan6
X

Fory=f (x), the angle between the tangent and the positive direction of the x-axis is

¢, i.e. the gradient of the tangent is tang, i.e. j_x = tan¢
y

Now, from the diagram, ¢ = 1—6) so tanO = ie d_ = _1_
2 tan ¢ dx dx
dy
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This result can now be applied to finding the derivative of an inverse function when
the derivative of the function is known.

Procedure

Step 1: Express x in terms of y

Step 2: Find @
dy

Step 3: Use y_1 to find &
dx dx

dax
dy
Derivative of sin’'x

Lety = sin'x  ( -1<x<1and —E[—<y<£)

2

iy——i' = sin'x = x=sin = %—cos = 92— !
dx  dx’ Y= Y d Y dx cosy

dy
Using cos®y + sin’y =1 cos y = \/l—sinzyz N

d 1
Thus —sin' x =
1-x°

Derivative of cosx
Lety = cos’x (-1<x<1and —£<y<%)
fi—)i——l—' =cos'x = x=cos = Ed—x———sin = dl— !
dx_@. 7T B dy Y de  —siny

dy
Using cos®y + sin*y = 1 siny = y/1-cos’y =A+1-x°

d 1
Thus —cos™ x =—
1—x°

Derivative of tanx
Lety = tan"'x
dy 1 1 dx 5 dy 1
= — =tan x =—x=tan = —= = =
dx éx_ y J dy sec’y e seczy

dy

1 2y +sin?
Using cos?y +siny =1 sec’y= - cos“y Zsm Y _ l+tanty = 1+
cos“y cos“y
1

Thus il—tan’lx = >

dx 1+x
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Examples

Differentiate : a) y =sin"'3x b) y = x?cos 'x
Solutions
dy 3

a)

1
= x3=
dx  \[1-(3x)? V1-9x?

b) Productrule : f(x) =x*> f'(x)=2x glx) = cos x g'(x) =—

2
Q:Zxxoos‘1x+x2>< _ = 2xcostxm—
dx N1-x2 1-x°
de 1+(Hx)? 2 24/x (1+x)

Note

) y=tan'x

The technique of finding the derivative of an inverse function links the derivatives of

e and Inx.

We can establish the result %e" = ¢" from first principles and then evaluate %1nx

as follows
y=Inx =Sx=€
= d_x — e)’
dy
o _1_1
dx ey X
Exercises
1. Orlando Gough Page 164 Ex. 3.5:2 Q.3,4
2. Sadler & Thorning Page 376 Ex. 15H Q.1-12
3. Hunter Page 69 Ex. 6.2 Q. 1n,0,p,q,1,8
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CONTENT

understand how an equation f(x, y) = 0 defines y implicitly as one (or more)
function(s) of x

use implicit differentiation to find first and second derivatives [A/B]

Comments
egx2+y’=1¢ y=1+ yJ1-x°, ie. two functions defined on [-1, 1].
Implicit differentiation was contained in CSYS Paper 2 (Unrevised).

Teaching notes

IMPLICIT DIFFERENTIATION

In a relation such as 3x° +y° + 2y =5, which cannot directly be expressed in the
form y = f(x), y is said to be defined implicitly as a function of x.

An implicit function can be differentiated using the chain/product rule where
necessary as illustrated below.

Example 1
Find % in terms of x and y for: 3x*+ y* +2y =5

Differentiating with respect to x :

d d d d
—Bx*)+—() +—(2y) =—)
dx dx Y dx Y dx

dl+2dl:0

6x+2y o (using the chain rule as appropriate)

fl)_}— —6x  —3x
dc 2y+2 y+1

dy
2 2y +2) =—6x
ax

2

The second derivative d); can be found by differentiating v
dx dx
dy
Q_i 3y _—3(y+1)~(—3X)X1X?d;
dx®  dx| y+1) (y+1?
—3y—3+3x(ﬁl
3 y+1
(y+D?
_(3y-3)(y+D-9x*  —9x*-3y°—6y-3
v+’ (y+1)°
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Example 2

d
Find Ey interms of x andy for: x>+ 7xy+9?*=6

Differentiating with respect to x:

d 2,9 a9, - 4
E;(x)+dx(7xy)+dx(9y)—dx(6)

d
2x + 7x% + 7y + 18yay =0 (using product rule for the middle term)

dy  —2x-T
Y prigy) = 20—y o P _HD
dx dx 7x+18y

Example 3
Find the gradient of the curve x> +xy +)*=1atx =1 (y # 0)

Differentiating with respect to x:

dy dy
2x+x— +y+2y— =0
dx Y ydx
— D —
dl(x+2y)=—2x—y :>£i!_:—x_:_y_
dx dx x+2y

To find y when x = 1, substitute into the equation of the curve:
1+y +y2 =1
y +y2 =0
yp+1)=0 = y=0ory=-1, ie.y=-1

-2+1
1-2

Gradient = 1

Note  Consider y = sin™x. This can be expressed as siny = x, where y is now expressed implicitly as a
function of x. Differentiation of an implicit function provides an alternative means of
differentiating y = sin’x, cos™x, tan’x and Inx

dx cosy 1—x?

=sin'x=> siny=x = cos
y Y

Exercises
1. Orlando Gough Page 69 Ex. 1.3:8 Q. 1-12
2. Sadler & Thorning Page 332 Ex. 13F Q. 1-14
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CONTENT

use logarithmic differentiation, recognising when it is appropriate in extended
products and quotients and indices involving the variable [A/B]

2 /
e.g. Find the derivatives of y = f——lji—?) ,y=2" [A/B]
+x

Teaching notes

Logarithmic differentiation is particularly useful for differentiating functions of the
form: y = fx)* % The procedure is illustrated in the following examples.

1. To find @ where y = 4"
dx

Step 1 Taking the log of both sides: Iny = In4" =xIn4
Step 2 Differentiating implicitly w.r.t. x: l% = In4
Y
. dy . dy .
Step 3 Expressing —— as a function of x: — = yln4=4"In4
dx dx
2. To find v where y = x*
dx
Step 1 Taking the log of both sides: Iny = Inx* =xlnx
1
Step 2 Differentiating implicitly w.r.t. x: —% :xl+1.lnx =1+Inx
y X
. ay . dy .
Step 3 Expressing - as a function of x: o =y(1 +Inx) = x(1 +1Inx)
x
2 /
3. To find /4 where y = XNTx=3
dx 1+x
1
2 _3)2
Step1 Iny = 12573 oyt Lin@x -3 —ind+»)
1+x 2
ldy 2 1 7 1 21x% +29x —12
Step2 ———= —+— - =
yde x 27x-3) 1+x 2x(7x-3)(1+x)

dy 21x% +29x-12  x(21x* +29x-12) . .
Step3 —=y = (Working has been abbreviated.)

de 7 2x(Tx=3)1+x) 20+x)%J7x-3

Exercises
1. Orlando Gough Page 109 Ex. 2.5:50Q.1,3,4,5
2. Sadler & Thorning Page 487 Ex. 19B Q. 21-24
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CONTENT

understand how a function can be defined parametrically
egx*+y*=r*  x=rcosB, y =rsinf

understand simple applications of parametrically defined functions

use parametric differentiation to find first and second derivatives [A/B], and
apply to motion in a plane

eg If the position of a particle is given by x = f(t), y = g(t) then the velocity

dx dx\ (ayY
components are given by I and fg— and the speed by \/ (Ej +[—ZJ .

Comments
Parametrically defined functions were contained in CSY'S Paper 2 (unrevised).

Teaching notes

The Cartesian co-ordinates of a general point on a curve may be given in terms of a
third variable, often # or 6. This variable is called a parameter and the resultant
equations are called the parametric equations of the curve. It is often possible to
eliminate the parameter and obtain the Cartesian equation of the curve.

Examples
1. Consider the parametric equations x = at*, y = 2at
Using y = 2at we have ¢ = e
a
2 2
x=af = a? — thus x= 2 andso y2:4ax
4a a

y*=4ax 1is the Cartesian equation of a parabola.
Thus x = a#?, y = 2at are the parametric equations of the parabola y* = 4ax.
2. Consider the parametric equations x =rcos 0, y =rsin 0
Here x2 + y? = r* cos® O + 7 sin® © = #* (cos” 0 + sin” 0) = r*
X*+y*= #* is the Cartesian equation of the circle centre the origin and radius r.

Thus x = rcos 6, y =rsin O are the parametric equations of the circle x* +)° = P
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PARAMETRIC DIFFERENTIATION

Parametric equations are differentiated as ‘functions of a function’ using the chain
rule as illustrated in the following examples.

Example 1

If y = 2at and x = a#?, find (1)—~— and (11) y [A/B]

a4y a’y dt b dx

(i)
de dt dx dr  dt

Yo Forst = Y m2som=?

dt dr dx t
2 —_— - —_
G Gr-d(v)_dfly_dil)d_dfl :ﬁz o= 7L
ac’  dx\dc) delt) de\e) ax de\e) ar ¢ 2at

Example 2

A stone is thrown out to sea from the top of a cliff. After ¢ seconds the horizontal and
vertical distances of the stone from the point of projection are x metres and y metres,
respectively, where x = 10z and y = —5¢%. The point of projection is 80 m above sea
level.

Find: (i) the position of the stone after 1 second; (ii) the time taken for the stone to
reach sea level; (iii) the speed at which the stone enters the sea and (iv) the angle at
which the stone enters the sea.

(1) When ¢ =1, x = 10 and y = —5. Hence, the stone is 10 m horizontally from the
cliff and 5 m below the level of projection.

(i)  Wheny =—80, —5t* = —80, so ¢ = 4. Hence, stone reaches sea level after 4
seconds.

(iii)  The horizontal component of the velocity of the stone at time ¢ is — =10
t

The vertical component of the velocity of the stone at time ¢ is @ =-10¢
t
. speed of stone after 4 second is /10% + (—40)® = 10417 ms™

(iv) Y dy ax and so after 4 seconds @ = (-40) ~+10=-4
dx drt dt dx

Thus the acute angle at which stone enters the sea is tan™' 4 to the horizontal.

Exercises

1. Orlando Gough Page 319 Ex. 6.3:1 Q.9,10,15,16
Page 322 Ex. 6.3:2 Q. 1-10 (note that most of the

questions include reference to the normal to the
curve.)

2. Sadler & Thorning  Page 327 Ex. 13D Q. 1-26 (select)
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CONTENT

apply differentiation to related rates in problems where the functional relationship is
given explicitly or implicitly

solve practical related rates by first establishing a functional relationship
between appropriate variables [A/B]

Comments
Explicitly: V= lacrzh; given dh fing 9
3 dt dt
. . . . dx . _dy .
Implicitly: ~ x*+y* =r* where x, y are functions of ¢; given = find a using
Zxd—x +2y @ =0
dt dt

Teaching notes

We are dealing here with problems in which there is a function defined either
explicitly or implicitly in terms of a third variable. In such cases we can use the chain
rule to find the rate of change with respect to this third variable.

dy dy dy dx
e.g. Ify=Ffk) andx =g(t) thenfor = wehave ——=-X—
g v=] g dt dt dx dt

Example
4
The volume of a sphere is givenby V = 3 m° and its surface area by A = 4w

The volume is increasing at the steady rate of 5 cm’/s.

a) Find the rate of change of the radius with respect to time, ¢ seconds.

b) Calculate the value of % when the radius = 4cm.

dt

Solution
(a) a = 4W2d_r Since, ﬂ: 5, ar =5+ 4’ = > 5

dt dt dt dt 4ar
(b) Elé: 85£rd—r = 8ur > 5 10 When r = 4, —— = 2:5 cm®/s

dt dt 4ar r
Exercises
1. Orlando Gough Page 65 Ex. 1.3:6 Q.12-19
2. Sadler & Thorning Page 324 Ex. 13C Q. 1-10
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FURTHER INTEGRATION

CONTENT

1

1
1’1“‘.7(:2 ’1+.x2

know the integrals of

1 1

use the substitution x =at to integrate functions of the form R
a’?—x? a +x

Comments
This content was contained in CSY'S Paper 1.

Teaching notes
From the notes on differentiation we have:

and —d—tan"’x: 1 -
1—x2 dx 1+x

—sin" x=

=tan" x+C

dx

giving f \/1‘

.1
=sin” x+C and
-[1+x2

—L
'\/a2 —xz

Using the substitutionx =at in | we have:

2
a X

x=at = =g = a-x=a-at=a*1-p)

0 = “dc=adr”
dt

. .1 X
=sinlt+C=sin'Z +C
a

J‘ dx _J adt _J' adt _J‘ dt
Na? —x*? Ja’(1-t?) a+/(1—¢%) NI
|——— , using the same substitution we have:
a tx
x=at= ¥*=ad*= a?+x*=a*+a’*=a*(1+ 1)

—di =a = “dx=adt’
dt

I de z:I zadtz :lj dtz :ltan_1t+C=ltan_1£+C
a”+x a*(1+¢%) al(+r%) a a a
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Examples
Integrate the following with respect to x:

1 | dx
9—x°
answer: | & sin! = +C
V9—x? 3
dx
2
J 9+x?
answer: [—— = LanZic
+x 3
3 J 2dx
1-4x?
2dx 2dx 2
answer: | =] =—]
1—4x? 4L -x%) 27 Ji-x
3dx
4
J 4+9x*
3dx 3 1 1.1 _x
answer: | == — = —X—-la
4+9x° 9 (#+x7) 3 3 2
Exercises
1. Orlando Gough Page 193 Ex. 4.2:3
2. Sadler & Thorning  Page 376 Ex. 15H
Page 501 Ex. 20A
3. Hunter Page 76 Ex. 7.1
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= | &

Q. 1b,2b,5ii, 6ii, 8i,
12,16,17,19,20

Q. 13-24

Q.17

Q. 1h,ik,1
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CONTENT

integrate rational functions, both proper and improper, by means of partial fractions;
the degree of the denominator being < 3, the denominator may include :
(i) two separate or repeated linear factors

(ii) three linear factors [A/B]
(iii)  a linear factor and an irreducible quadratic factor of the form x? + a* [A/B]

Comments
This content was contained in CSYS Paper 1

Teaching notes

Expressing a proper rational function in terms of partial fractions has been covered in
Mathematics 1 (AH) Outcome 1. The procedure for integrating proper and improper
rational functions is illustrated in the following examples.

Examples
1. Find | xS
x+Dx+2)
x+3 2 1

= - (partial fractions)
x+Dx+2) x+1 x+2

x+3 2 1
— = dx= dx — de=2In(x+1)-Inx+2) +¢
-[(x+1)(x+2) Jx+1 Jx+2
2
= lnM, where ¢ = InC
(x+2)
2. Find j——x—_z—zczx
(x+3)
x-=2 1 5

(x+3)° T x+3 (x+3)°

x—2 1 5
dx = dx — de=In(x+3)+5x+3) 7" +C
-[(x+3)2 o J-x+3 f(x+3)2 * (4 3) +50x

Ox* —6x+3
x+D2x-D(x-2)

3. Find |

I9x*—6x+3 2 1 N 3
x+D)2x-D(x-2) x+1 2x-1 x-2

2.—-
O9x“—6x+3 dx:j 2 dx—j 1 dx+j 3 dx
x+D2x-D(x~-2) x+1 2x—1 x—2
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=zmu+n-%mam4nam@_a+c

Clx+1)?*(x-2)°

= In
(2x — 1)/

, where ¢ = InC

3x?—-2x+16

4. X —ex+16
Fmd-hz BT

3x*-2x+16 _ 3 N 2
R-x)(x*+4) 2-x x*+4

3x°=2x+16 J 3

— de+ f chz—ﬁdZ—ﬂ+g&m4£+C
2-x)(x* +4) 2—x x“+4 2 2

:—3mp—q+um*§+c

x° 1 1 . . .
- =l+——=1+ - (by dividing out and then partial fractions)
x° -1 x° =1 2(x-1) 2(x+1)

[+

juu+j ~fl L dr=xttinfe-1- Ll c
zu ) 2 (x+1) 2 2

3

6. Evaluate j 2
) e+ (x-1)
2 1 1

x+D)(x—=1) x—1 x+1

3

3
:le_ldx—lﬁdx: fnfic— 1~ tnfx +1]

2

!(x+1)(x 1)

= (In2 -~ In4) — (In1 —In3) =In2 —In4 + In3 = ln%: In1-5

Exercises

1. Orlando Gough Page 196 Ex. 4.2:5 Q.1,2,3,4,6,7, 89,10

2. Sadler & Thorning Page 487 Ex.19B Q. 35,36,39, 40,41,43f,46,47,48
Page 508 Ex.20C Q. 27,38,56

3. Hunter Page 80 footof pagea-g
Page 85 Ex. 7.2 Q. 1c,h,v,w,x
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CONTENT

integrate by parts with one application e.g. Jx sin x dx

integrate by parts involving repeated applications [A/B] e.g. j x2e™ dx

Comments
This content was contained in CSYS Paper 1.

Teaching notes
Consider the product rule for differentiation :

integrating both sides we have :

av du . . av du
uy = fu de + Jva;dx and rearranging gives: Ju de =uy-— jv;,;dx

dv
To evaluate | f (x)g(x)dx we replace f(x) or g(x) by u and the other by . and apply

Ju %dx =uy-— jv%dx For example, replacing f (x) by u and applying the above

gives [ f(X)g(x)dx = f(x)[g()dx—[ f'(x) ([ g (x)dx )dx

v
Note : The choice of function is important since u will be differentiated and T will
X

be integrated. The choice will normally be dictated by the function which should be
integrated to avoid introducing a more complicated integration.

Examples

1. jx sin x dx

Let u =x and Q:sinx = £l’—u—:l and v =-cosx
dx dx

Now Ju %dx :u.v—J.v%dx

Thus [xsinxdx =x (-cosx) - [(—cosx).1dx = -xcosx +sinx +C
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2. j X e¥ dx

Let u=x*> and @:e“ = —Cﬂ:Zx and v:le3’c
dx dx 3

Ix2e3xdx =x? %e“ - J%—e” 2xdx = %xze“ —%J-xe”dx

1
Note: for J-xe“dx let u =x and ﬂ:eb‘ = d—uzl and v=—¢**
dx dx 3

fxe3”dx:x —1—63"- J-le“dx = —1—xe3" ~le3" +C
3 3 3 9

f 2 eFdx = ~1—xze3"—E lxe3x—le3" +C=lxze3x—3xe3"+ie3"+c
3 313 9 3 9 27

This process is also useful in some situations where there is no obvious product.
3. jlnx dx

We write flnx dx as flnx.l dx

Letu = Inx and £i—v—:l = d_u:l and v =x
dx dx x

jlnx dx:jlnx.ldx = xInx —Jx.%abc = x Inx - jldx:xlnx—ﬂc

This procedure is useful when integrating inverse trigonometric functions.

Exercises
1. Orlando Gough Page 199 Ex. 4.2:6 Q. 1,2,4,5,6,
11,12,13
2. Sadler & Thorning Page 505 Ex. 20B Q. 1-25 (select)
Page 508 Ex. 20C has mixed integration
questions. Select from N* 1 — 56.
3. Hunter Page 77 Ex.7.1Q.4
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CONTENT

know the definition of a differential equation and the meaning of the terms linear,
order, general solution, arbitrary constants, particular solution, initial condition

solve first order differential equations (variables separable)

i.e. can be written in the form dl = g_(xl

h(y)

Comments

The first part of the above content is background knowledge, the second part was
contained in CSYS Paper 1. ’

Teaching notes

. . . . _dy d?
Any equation involving y as a function of x and any of its derivatives é,—);

and possibly the independent variable x is called a differential equation.
The order of the highest derivative determines the order of the differential equation.
Solving a differential equation of order » requires » integrations and we would have n

constants of integration. At this stage we restrict ourselves to first order differential
equations.

Consider : y=x*-3 = %:Zx

also y=x*+5= Eg—“’-V—ZZx
dx

There are an infinite number of equations of the form y =x* + C which have
derivative 2x.

) ) ) . d )
We have, therefore, the first order differential equation : Ey = 2x with general

solution y =x?+ C, where C is an arbitrary constant.
The solution is a family of functions. The solution is found by integration.
To find a particular member of the family, i.e. find a particular solution , we need to

be told corresponding values of x and y. A condition such as (y = 5 whenx = 0)
where we are given the initial value of y is called an initial condition.

dy
e.g.. —=2x =5 whenx =0
g : y

= y=x*+C=5=0+C=>C=5 = y=x*+5
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Example

C—bi:4x—3 and y=9 when x=-1

dx

integrating both sides:

y=2x*-3x+C

= 9=2(D)*-3(D+C
9=2+3+C
C=4

y =2x?-3x + 4 is the particular solution.

VARIABLES SEPARABLE
Here we consider differential equations of the form & = &
dx  h(y)
dy g(x) dy
If =—=<="=- then A(y)—=g )
de  h(y) Y dx g
Now ——(fh(y)dy fh(y)dy) Y —h(y) ol =g (x)

SO fh(y)dy = fg(x

dy _glx)
dx  h(y)
(Hence the description ‘variables separable’)

Thus can be solved by writing it in the form Jh( y)dy = j g (x)dx

The procedure for solving such equations is illustrated in the following examples.

Examples
1. Solve the equation y° % =4x
j y:dy = J- 4x dx
% =2+ C
=  y’=6x*+k isa general solution

Note that C is an arbitrary constant and when the solution is multiplied by 3 the arbitrary constant 3C is
written as k.
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2. Solve the equation (x —1) % =y fory>0andx >1

y x-1
Iny=Inx-1)+C

Since C is an arbitrary constant it can be replaced by Ink giving

Iny =In(x-1) +Ink =lnk(x-1)

Iny = Ink(x—-1) =  y=k(x—1) is a general solution

3. Solve e* % =xy® given y=1 whenx=0

jy'zdy = j x e dx

To evaluate the right hand side let # =x and %xv— =e™ giving Z—u =1 and v =-¢€°
X

fxe'xdx =-x.e —j -ef.1ldx =x e’ - e
ie yl=xe'-e"+C
substitute x and y values 1=0e"-e"+C = C=0
1 x 1 1 x+1 e’
e, ——=—"——— —_ =
y et e' y e x+1
Note
dy  h(y) dy dx
To solve —=— =-—— the equivalent expressionis |— - = .
dc gl o0 P o =12

The solution of examples of this type are illustrated in the next section.

Exercises

1. Orlando Gough Page 206 Ex. 4.4:2 Q.1-4 (select)
2. Sadler & Thorning  Page 515 Ex. 20D Q. 1-32 (select)
3. Hunter Page 78 Ex.71 Q.6
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CONTENT

formulate a simple statement involving rate of change as a simple separable first
order differential equation, including the finding of a curve in the plane, given the
equation of the tangent at (x, y), which passes through a given point

know the laws of growth and decay : applications in practical contexts

Teaching notes

In Mathematics 1 (AH) the relationship between displacement, velocity and
acceleration was covered. The concept of ‘solving for C’ given the gradient of the
tangent to a curve and a given point on that curve is contained within the Higher
course.

Examples

1. The rate of change of the potential ,V, of a charged condenser is given by the

. dv V . . . .
differential equation o = “CR where ¢ is the time, C is the capacity of the

condenser and R is the resistance to earth. Given that C = 6 X 10° units and V
falls from 200 to 160 units in 50 units of time calculate the value of R.

dv dt t
A i = InV=—-—+%
vV CR CR

Whent=0 V=200 = In200=0+% = k£ =1n200

Hence InV = ——%15 +1n200

6x10

V=160, t=50 = ln160 = >0

————— = R=373x10’
200 6x107°R

. . dy 1+y°
2. The gradient of the tangent to a curve is given by Q1)

dx tanx

Find the equation of the curve if it passes through the point ( %, 1)

J- ! 2a’y:f ! dx =tan’ y = ch)sxderC =tan y = ln|sinx‘ +C
1+y tanx sinx

Givenx:E,y:I: tan” 1 = In|sin £|+C:> T —mlmi+Cc= c="
2 2 4 4

. . X
Hence tan™ y= ln[smx[ + 7
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3. If Iis the intensity of light at a depth x metres below the surface of the sea then

dl . .
— =—kI where £ is a positive constant.

dx

If Iy is the light intensity at the surface express / in terms of £, x, and /.

j%dlz—‘[kdx =  Inf=-kx+C
When x=0, I=1y = Inly =-k0+C
C-—'-‘-lﬂ[()
In/=-kx+1Inly
Inf/—Inly =-kx
In—[~:—kx = i:e*k" =  I=Ie"
0 IO

Note
The above is a particular example of a relationship displaying exponential decay.
When the coefficient of x is positive we have exponential growth.

Exercises

1. Orlando Gough Page 208 Ex. 4.4:3 Q. 1-6
2. Sadler & Thorning  Page 516 Ex. 20D Q. 41,42
3. Hunter Page 78 Ex.7.1Q.738,9
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COMPLEX NUMBERS

CONTENT

know the definition of i as a solution of z2+ 1 =0, so that i = v/—1

know the definition of the set of complex numbers as C = {a +ib :a, b € R}
know the definition of real and imaginary parts

know the terms complex plane, Argand diagram

plot complex numbers as points in the complex plane

Comments

This content was contained in CSYS Paper 1. All except the last statement could be
described as background knowledge.

Teaching notes

When solving quadratic equations the value of the discriminant had to be considered
to determine the nature of the roots. There were three possibilities:

b? - 4dac =0 = real and equal roots
b? - 4dac >0 = real and unequal roots
b? - 4ac <0 = no real roots

It is the third possibility in which we are interested in this section.

Complex Numbers
Firstly, consider the equation z* + 1 = 0 for which z* = -1.

This equation has no real roots. The solution of this equation is defined to be the
imaginary number ¢/ which stands for +—1.

Secondly, consider the equation x* - 2x + 10 = 0, say

—(—Z)i\/(—2)2—4><1><10 2++/-36
The roots are : x = 5 = >
X

1

2t60 .
=1t 3

Assuming that ~—36 = J364/=1=6i we have x =

The set of complex numbers is definedtobe C={a+ib:a, b € R}.

We often use z =a + ib as a member of this set.

The real part of z is ‘a’ (Re(z) = a) and the imaginary part is ‘6’ (Im(z) = b).
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Examples
1. Solve z2=-9

z22=-9 =  z22=92 = z22=43;

2. Solve Z2+2z+4=0

24422414 24412 24127 24243

z= = =

2 2 2 2

z=-1+/3

Complex Plane and Argand Diagrams
Complex numbers can be represented geometrically using the x-axis as the real axis
and the y-axis as the imaginary axis. This is known as the complex plane and a
diagram showing complex numbers is called an Argand diagram.

Alm .
The complex number z = a + ib is represented

by the point P(a, b
P (@ b) yHep @ b)

' 4
o Re

Example Show the following complex numbers on an Argand diagram :

a) z=2+1
b) z=4i-3
AIm
z=4i-3 |
— e z=2+1
T T T T T T T T
~ Re
Exercises
1. Orlando Gough Page 344 Ex. 6.5:1 Q.1-5
Page 353 Ex. 6.514 Q.1-7
2. Sadler & Thorning Page 463 Ex. 18D Q.6
Page 467 _ Ex.18E Q.1,2
3. Hunter Page 39 Ex. 4.2 Q.1,2,3

Note that Orlando Gough does not mention the ‘complex plane’.
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CONTENT

perform algebraic operations on complex numbers :
equality (equating real and imaginary part), addition, subtraction, multiplication and
division

evaluate the modulus, argument and conjugate of complex numbers

convert between Cartesian and polar form

Comments
This content was contained in CSY'S Paper 1.

Teaching notes

As with other sets of numbers, we can perform algebraic operations on complex
numbers:

Equality: Givena +ib =c +idthena =c (equating real parts) and b =d (equating
imaginary parts).

Addition/subtraction: Givenz; =a +ib and z; = ¢ + id then
zi+zy=a+ib+c+id =(a+c)+ilb+d)

zZi-zz=a+ib—(c+id) =@-c) +i(b-d)

Multiplication/division: Given z; =a +ib and z; = ¢ + id then
z1.20 =@+ib).(c+id) = ac+iad+ibc +i*bd
(ac —bd) + ilad + bc)

It is preferable to introduce the notion of the conjugate of a complex number before
tackling division.
If z=a + ib then the conjugate of z is a —ib and is denoted by z
Note that zz = (a + ib) (@ — ib) = a? -iab + iab — i*b* = a® + b?, i.e. zZ isreal.
a-+ib

z, vz, = i is simplified by multiplying both numerator and denominator by the

a+ib ><c —id _ (ac +bd) +ilad —bc)

complex conjugate of the denominator: - — = > >
c+id c—id ¢’ +d
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The modulus and argument of a complex number

Alm P(a, b) represents z = a + ib.

P (@ b) denote the modulus of z by | z |.

L Thus |z | = Va® +b°

of z, commonly written as arg(z)

»Re The angle, 6, that OP makes with the positive
direction of the Real axis is called the argument

r, the length of OP is called the modulus of z. We

b
Thus arg(z) =0 = tan“lzl— . Commonly - i< 6 < 7

Cartesian/polar form
z =a + b is termed the Cartesian form of the complex number z.

Now a = rcosB and b = rsin® so z can be expressed in the form
z=r(cos® +isinB ). This is the polar form of z.

The modulus and argument of a product of complex numbers

Suppose that z; = r;(cos0; + 7 sin0; ) and z; = r2(cos0, + i sind )

z; X zy =r;(cosB;+isinO;) X ry(cos@,+17sin0,)

=r;ra([cosB; cosO, - sinB; sin@, ] + i[sinB; cosH, + cosH; sinO, |)

=ry r2(008b1+62 + isinléﬁre2 )
Thus | z; X z2] =77 r2 = | z7] X | 22| and arg(zy X z2) = arg(z;) + arg(zy).
It is easily shown that:
| z; X zaX 23 X ... X z,| = | 27| X | z2] X | 23] X ...X | z,| , and
arglz; X z; X z3 X... X z,) = arg(z;) + arg(zy) + arglzs) + ...+ arglz,) .
For the special case wherez; =z2=z3=...= 2, =2

|Z"|=|z|" and arg(") =n x arg(z) ie 2" =" (cosnb +isinnb)

The modulus and argument of iz

+ arg(z)

|

liz|=|i|x|z|=1%x|z|= |z| and arg(iz) = arg(i) + arg(z) =

T
Thus multiplying by 7 is equivalent to a rotation of 5 about the origin.
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The modulus and argument of z

If z=a +ib then Z =a —ib and hence,

b
|Z|za2+ (—b)22a2+b2:|z[and arg(z) = tan ! =- tan'— =-arg(z)
a

9

Thus “Zz ” is the image of “z

The modulus and argument of zz

a

under reflection in the Real axis.

27 =a’+b° thuszZ isreal, |zZ|=|z|x|Z|=|z| andarg (zZ) =0

a) 2+3)0@-2) answer: 2+ 300 -2) =21 -4+ 3i?-6i=-7-4i

43-i) _12-4i 6 2.

Examples
1. Simplify :
b) 4 answer: —— =
3+i 3+1i
2. Express z =3+ 4i in polar form

G+)G-i) 9+1 5 5

answer:a=3 andb=4, ..|z|=+3*+4% =5, argument = tan™’ % =53-1°

.. z=5(cos53:1° + isin53-1°)

3. Express z = V2 (cosiz— +1isin ﬂz) in Cartesian form

1 1
answer: zzx/z —t+i—|=1+7
[ﬁ ﬁ)

4, Express - 7 in polar form (hint: change to Cartesian form first)
l —
-8 ~8G++3) -8G+3)
- = =2(++3)
-3 ((=3)E+3) -4
Modulus = /16 = 4, argument = tan” 2 =1 = 4(cosit— + isin it—)

Exercises

1. Orlando Gough Page 347
Page 356
Page 357

2. Sadler & Thorning  Page 463
Page 467

3. Hunter Page 37
Page 40
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Ex.6.5:2 Q. 1-33 (Select)
Ex.6.5:6 Q. 1-8 (Select)
Ex.6.5:7 Q. 1-8 (Select)
Ex.18D Q.1-5

Ex. 18E Q. 3 —7 (select)
Ex. 41 Q.1-4

Ex. 4.2 Q.5,6,9
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CONTENT

know the fundamental theorem of algebra and the conjugate roots property

factorise polynomials with real coefficients
e.g. Find the roots of a quartic when one complex root is given

solve simple equations involving a complex variable by equating real and imaginary
parts

Comments
This content was contained in CSY'S Paper 1.

The Fundamental Theorem of Algebra

The fundamental theorem of algebra states that every polynomial equation of the
form @ + an X" + anox™ + ..+ ax® + ap +ap =0 (where ay, dny, .... az ag, agare
complex numbers) has at least one complex root. Using the Remainder Theorem, it
can be proved by induction that the equation has #» complex roots.

If the roots are a, 0z O3 Cly.... Oy, O (Some or all of these may be real and not all
need be distinct) then it follows that

. 2
A + @ X"+ ot ax + ax +ap=a, - o) - ). - Oz) O - ) (x - )

Since the real numbers form a subset of the complex numbers the above results
are true when the coefficients are all real.

Conjugate Root Property
When the coefficients are real it further follows that if z = a + ib is a root of the
polynomial equation then z =a —ib will also be a root of the equation.

Proof
Suppose that z is a root of ax" + an X+ .+ ax’ + ax +ap = 0 where the
coefficients are real then a,2" + a, ;2" + ..+ ax2° + a;z +ap="0

Taking the complex conjugates of each side we have

— n = _nl — 2, === _7
a,z’ +a, z" +.... +a,z"+az+a, =0

n—

= an @)+ GV 4 GV a1 Z +ap=0 B

(since a, is real forr=0ton, then @ =a,forr=0ton, and 2" =Z")

Hence z is also a root of the equation. z and z are known as conjugate roots.

Factorising Polynomials with Real Coefficients
Additionally, if z =a +ib and z = a - ib are roots of the equation, then
(x —z) and (x — z) are factors of the polynomial and (x —z)(x — Z)

=x’— (@ +Z)x+2zZ =x*—2ax + (@ + b®) is a quadratic factor with real coefficients.
This result is used to factorise polynomials with real coefficients.
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Examples

1. Giventhat z= 1-7/ 1is a root of the polynomial equation
2%+ 4z° - 8z + 20 = 0, find the other roots.

Ifz=1-i{isarootthensoisz=1+7andthus z—1+7) and (z -1 —{) are
factors of z* + 4z° - 8z + 20.

Hence, z—1+1)(z—1—1i) =z -2z + 2 is a factor of z* + 4z3 - 82 + 20

Dividing z* + 4z - 8z + 20 by z° — 2z + 2

22+ 6z + 10

22— 2z + 2l 28+ 427+ 0z — 8 + 20
- 227+ 27
627 — 2z - &
60 — 1272 + 122
10z2 — 20z + 20
10z — 20z + 20

Thus the other quadratic factor is z> + 6z + 10

—6++/ — —6+27
Forz2+6z410=0, z= 0% 236 40 _ 62—2’:—3ii.

Hence, roots of 4425 8 +20=0are1+iand -3+

2. Find the ‘square roots’ of 5+ 12/

Letz=a +ib be a ‘square root’ of 5+ 12/
(@+ib)*=5+12i = a*+2iab -b*=5+12i
Equating real and imaginary parts we have:

at-b* =5 and 2ab =12 = ab=6 = azg

6 2
(;j ~-b*=5 =36-b*=5p"

=b* +5b* -36=0
= b*+9)B*-4)=0
= B*+9B-2)b+2)=0
since > +9#0 b=-2(andsoa =-3)orb=2(andsoa = 3)

Thus the ‘square roots’ are 3 + 2/ and — 3 — 2/

Exercises

1. Orlando Gough Page 351 Ex.6.5:3 Q. 1-12,15-20, 23-27 (select)
Page 354 Ex.6.5:5 Q. 1—- 26 (select)

2. Sadler & Thorning  Page 463 Ex. 18D Q. 6 — 13 (Select)

3. Hunter Page 37 Ex. 4.1 Q. 5; Page 40Ex. 4.2 Q. 7,8

Note: Sadler & Thorning does not cover the ‘fundamental theorem of algebra’.
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CONTENT

interpret geometrically certain equations or inequations in the complex plane

eg. lzl=1|z—-al|=b |z=-1=|z-1}| |z—a|>b

Teaching Notes

Geometrical interpretation of equations and inequalities
The solution sets of complex equations and inequalities can be represented by sets of
points in an Argand diagram. For example:

(@

(b)

(©)

1 is represented by A (1, 0)
i is represented by B (0, 1)
|z-1]|=]z-i|= point representing z is BO,1) ?
equidistant from A and B ie lies on the
perpendicular bisector of AB, ie y =x

lz|=1

If z=x+iyand|z|=1then \x*+y°=1
Thus all the points representing complex numbers with modulus =1 lie on the

circumference of a circle, centre the origin and radius 1.
| z | =1 is called the complex equation of this circle

lz-al|=b

Ifz=x+iythenz—a=k—-a) +iy

sol|z-a|l=b= k-a)’+y*=b"

Thus all the points representing complex numbers z, for which |z -a | =b lie
on the circumference of a circle, centre (a, 0) and radius b.

|z - a|=b is the complex equation of this circle

z-1|=]z-i]

Ifz=x+iythenz—1=@x-1)+iyandz—i=x+ (y - 1)i.

solz-1]=|z-i] =&-1)*+y*=x*+@-1)*
S+ 14y =0+ =2 +1
=>x=y

Alternatively, using an Argand diagram

Alm

. '
Ao  ne

Further examples are to be found in the recommended textbooks with the exception of Orlando Gough
which does not cover the geometric interpretation of ‘certain inequalities or inequalities in the complex

plane’.
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CONTENT

know and use de Moivre’s Theorem with positive integer indices and fractional
indices [A/B]
e.g. (cos O + isin 0)°

(cos O + isin 0)” [A/B]

apply de Moivre’s theorem to multiple angle trigonometric formulae [A/B]
e.g. Express sin50 in terms of sin0 only. [A/B]
Express cos’ 0 in terms of cos® and cos30. [A/B]

apply de Moivre’s theorem to find nth roots of unity [A/B]

Comments

This content, apart from the last statement, which was in CSYS Paper 2 (Unrevised),
was contained in CSY'S Paper 1.

Teaching notes
De Moivre’s theorem

Given z = cosO + /sinf (The locus of such points is x* + y* = 1)
z% = (cosB + isinB) ( cosb + isinB) = cos? + 2isin O cosO + i%sin*O
= co0s?0 - sin®0 + 7 2sinf cosH

= c0s20 + isin20

23 = (c0s20 + isin20) ( cosO + isind)
= ¢0s20 cosO + 72sin20 sinB + icos20 sin® + 7sin20 cosO
= 0520 cosO - sin20 sin® + i(cos20 sin O + sin20 cosO)

=c0s30 +isin30

This leads to : | (cosO +isinB)” = cos nb + isin #n6, where n is an integer |

and [ r(cosB +7sin0))" =r"(cos n0 + isin n0), where n is an integer |

These results are proved, later, by induction for integer powers. They are in fact true
for rational powers.

De Moivre’s theorem also gives a method for finding the n"™ roots of a complex
number.
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Examples

1. Evaluate (1-i)’

Letz=1-: (Cartesian form) = J2 (cos (— J—;—)+ isin (— %))

7 T o [Ty
z (<2 (cos ( 4)+ZSIH( 4]))
(+/2)7 cos (—77“}+isin (-77%])

=8+ 8

1

2. Evaluate z = (4(cos§+i sin g))z

1

z= 45(005% + isin%) = i2(£+i%)= V3 4+ior 43

2

3. Express sin50 in terms of sin®.

Applying de Moivre’s theorem to (cos® + isin® )’

(cosO + isind )° = cos50 + isin50

Applying the Binomial Theorem to (cos8 + isinf )

(cosO + isind )° = cos’® O + 5icos*0 sind + 10i%cos*0 sin?0

+107%c0s?0 sin®0 + 5i*cosO sin*0 + °sin° 0

Equating imaginary parts:
sin50 = 5c0s*0 sind - 10cos?0 sin®0 + sin’0
= 5(cos20)? sinf - 10 cos?0 sin®0 + sin’0
=5(1 — sin?0)%sin® - 10(1 — sin0 )sin®0 + sin°0
= 5sinf - 10sin®0 + 5sin’0 - 10sin®6 + 11sin’0
i.e. sin50 = 5sind - 20sin°0 + 16 sin’O
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4. Express cos®0 in terms of cos® and cos30
Let z = cosO + isinB, then

1 1 cosO—7sin0

z cosO+isin0 B (cose+isin6)(cose—isin6)

cosO—7sin0 ..
= ——2————.——2——:cos6—zsm6
cos O+sin“0

1 1 1
Thus z+ — =2cosO and so cos® = =(z+ —) and
z 2 z
1
2+ (=) = (cosO + isind )* + (cosO — isin®)* = (cosO + isind )* + (cos(-0) — isin(-0))F
z
= (coskO + 7sinkB ) + (cos(-k0) — isin(-k0)) = 2coskd
1

1 1 1 1
Hence cos’0 = [Wa(z+ —)P= = [2° + 32%(—=) + 3z(=)? + (=)]
z 8 z z z

[2°+ 3z+3(1)+ (1)3]
Z Z

[+ (l)3 +3z+ 3(-1~)]
Z Z

Ot OO|r 00| =

(2c0s38 + 3x2cos0) = —3 (cos30 + 3cosH)

5. If z = — 8¢, find the cube roots of z.

We firstly express z in the form cos0 + isin0.

T T
Taking z = 8(cos| —— |+ isin| —= |)
[ i )L
we get z3 = 83 (cos| —= |+isin| —= |)3

This gives us only one solution and the fundamental theorem of algebra tells
us that there are three roots.

Consider, instead, z = 8(cos(2an - %) +isin(2nw - ZEZ—)) which takes the value

—8i for all integral values of 7.

1 -
In this case z3 = Z(COS(ZI’lﬂZ - g) +isin(Znm— g))3

Wenow taken =0,n=1and n =2 giving
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n=0: 2(cos T + isin —i): «/g—i
6 6
n=1: Z(cos1 + isinl) =2
2 2
n=2: 2(coszg— +isinzg—):—\/§ -7

Thus there are three distinct roots \/5 —1, 21, and —«/5 -1

Had we taken n = 3, n = 4 and n = 5 these would have yielded 3 —7, 2, and -3 —i
respectively. As would have been the case had we takenn = 6,n =7 and n = 8 etc.

6. Find the n™ roots of unity ie the solutions to the equation z” = 1

=1 =1=z'=1=]z|=1
Then z can be expressed in the form cos6 + 7sinf for some 6
Now z°= (cosO + isinf)* = cos20 + isin20

Z° = (cosO + isinB)° = cos30 + isin36

.......................

Thus if the points P, forr =1 ton
represent z forr=1ton
respectively, then they lie, equally
spaced, on the circle, centre the

>
origin, radius 1 and £P,OP, =0 X
as shown in the Argand diagram on Pn
the right.

Now z" = 1 & P, coincides with Py=>n0 =2 =0 = E
n

T 2w th .
Thus cos— +isin— is ann  root of unity.
n n

There should of course be 7 n™ roots of unity.
Clearly, since 1" =1, 1 is an "™ root of unity.
Now (z')" = ()" hence:

zisarootof unity =>z"'=1= (") =1= ()" =1 =7 is aroot of unity.
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Thus the 7 n'™ roots of unity are represented by n equally spaced points on the
unit circle, including the point (1,0).

P> P

For example the 6™ roots of unity are

represented by the points Py, Py, Py,

Ps, P4, Ps in the Argand diagram on
P> the left.

Exercises

1. Orlando Gough Page 359 Ex.6.5:8 Q. 1-13 (select)
2. Sadler & Thorning  Page 476 Ex. 18G Q. 19 -22

3. Hunter Page45 Ex. 4.3 Q.1-10 (select)

Note that Orlando Gough does not cover the application of de Moivre’s Theorem to
multiple angle trig formulae. Neither Orlando Gough nor Sadler & Thorning mention

n™ roots of unity, although both contain some examples.

Note

1. The n" roots of unity can be found using de Moivre’s Theorem as illustrated in
example 5 above.
In this case we would take z = cos2nx + isin2nx

2. The exponential form z = re'°, which provides a link with power series, is
addressed in the Teachers’ Notes for Mathematics 3(AH).
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SEQUENCES AND SERIES

CONTENT

know the meaning of the terms infinite sequence, infinite series, n" term, sum to n
terms (partial sum), limit, sum to infinity (limit to infinity of the sequence of partial
sums), common difference, arithmetic sequence, common ratio, geometric sequence,
recurrence relation

know and use the formulae u,=a+ (n—1)d and S, = %(Za +(m-1d) forthe n™

term and the sum to »n terms of an arithmetic sequence, respectively.
all—r")

1-r
the sum to n terms of a geometric series, respectively.

know and use the formulae u,, = ar”! and S, = ,» #1, for the n™ term and

know and use the condition on 7 for the sum to infinity to exist and the formula

S =

oo

n for the sum to infinity of a geometric series where |7 | < 1
—r

Comments
This content was contained in CSYS Paper 1.

Teaching notes

Higher Mathematics involved the study of recurrence relations of the form
Un+1 = mu, + ¢ and the sequences they produced.

In this section we consider two particular types of sequence arising from this form of
recurrence relation.

First Type

Ups1 = MU, + ¢ Withuy =a, m =1 and ¢ is any number d
The recurrence relation is then defined by u,.+1 = u, + d, u; = a which gives rise to the
infinite sequence a,a +d,a +2d,a + 3d, ...... where u,=a + @n - 1)d

e.g. if we take a =5 and d = 3 then we obtain the sequence 5, 8, 11, 14, .....
if we take a = 20 and d = -5 then we obtain the sequence 20, 15, 10, 5, ...

Since u,41 - u, = d there is a common difference between terms (hence the reason for
using d). Such sequences are called arithmetic sequences.

a,a+d,a+2d,a+3d, ...... is called the general arithmetic sequence

The sum of the terms of an arithmetic sequence is called an arithmetic series.
a+@+d+@+2d)+(a+3d), ...... is called the general arithmetic series.
and the n” term of the series is u,=a+n-1)d.

Particular examples are 5+ 8+ 11+ 14+ .... and 20+15+10+5+....
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The sum to n terms (partial sum) of the series is denoted by S,,.

ie.S,=a+@+d)+@+2d) +(a+3d), ...... +@+ @m-1)d

Now S, = a + f(a+d) + .... + (a+[n-2ld + a+ln-11d
also S, = a+tln-11d + (a+[n-2ld + ...... +  (a+d) + a
adding 28, = 2a+[n-11d + 2a+[n-1ld + ...... + 2a+[n-1ld + 2a+|n-1]d

Thus S, = —Z—(Za +(n-14d)

eg. for 5+8+11+14+....a=5 d=3 so Sn:%(2a+(n—l)d)=%n(3n+7)

Example: Find thesumof4+9+....... 84

First we need to find the value of n.

u,=a+m-1)d = 84=4+m-1)5 = 8 =5n = n=17

Si7= %(2X4+16X5) =748

Exercises

1. Orlando Gough Page 218 Ex.51:3 Q. 1-7,12-17,23 =26, 30
2. Sadler & Thorning  Page 210 Ex. 8A Q.1 - 30 (select)
3. Hunter Page 25 Ex.3.1 Q.4-9

Note that Sadler & Thorning does not cover recurrence relations.

Second Type

Up1 =mu, +c withu;=a,m=randc =0

The recurrence relation is then defined by u,+1 =ru,, u; = a which gives rise to the

v e . 2 . . .
infinite sequence a, ar, ar’, ar3, ...... where the n" term is given by u, = ar" !

e.g.  if we take a= 3 and r = 2 then we obtain the sequence 3, 6, 12, 24

For this type of sequence u,.1 / u, =r, i.e. there is a common ratio between terms
(hence the reason for using 7). Such sequences are called geometric sequences.

a,ar,ar’, ar’, ... ar"! , ..... is called the general geometric sequence.

The sum of the terms of a geometric sequence is called a geometric series.

anda +ar+ar’ +ar* + ... +ar"", ....is called the general geometric series.
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The sum to n terms (partial sum) of the series is denoted by S,,.

ie.Sp,=a+ar+arr+ar*+ ... +ar*’!
Now S, = a + ar + +  a’? o+ g™
also rS, = ar o + a™ o+ o™t o+ o
subtracting (I-r)S, = a 0 e + 0 + 0 -ar’
1— n
Thus S, = 2027 g,
1-r
n-1 a(l—r") n
e.g. for 3,6,12,24, ...... a=3, r=2 u,=32" and S,= —=3(2"-1)
—r

Example: Find the first terms and common ratios of two possible sequences whose
fourth terms are 4 and whose eighth terms are 0-25.

ar’=0.25 (i) and ar® = 4 (ii)
1 1
Dividing (i) by (ii) we get #*= — = r =— or - —,
g by g 16 2 2
.. 4 1 _
giving a= —— =32 when r=— and a=-32 when r=-
0.125 2

[\

Sum to infinity of a geometric series

We have found that S, = M,r #1,

—-r

] a
Now, if -1 <r<1then#" = 0asn — >~ andso S, — 1—asn%<>°
—r

. a o e . .
We write S, :f— and call S.. the sum to infinity of the geometric series or
—r
alternatively the limit to infinity of the sequence of partial sums.

Example: Find the sum to infinity of the series 2+ 1+ — + — + ...

|

1
2

a=2 andrz—;— = S, =— = =4

Exercises

1. Orlando Gough Page 221 Ex.5.1:4 Q. 1-7, 25-27, 34,35
Page 227 Ex. 5.1:6 Q. 2-6, 9-11

2. Sadler & Thorning  Page 216 Ex. 8B Q.1 - 28 (select)

3. Hunter Page 25 Ex. 3.1 Q. 10-16, 20-22
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CONTENT

Expand

as a geometric series and extend to [A/B]

—-r a-+

know the sequence (l + lj and its limit
n

know and use the 2 notation

know the formula Zr = %n(n + 1) and apply it to simple sums

r=1

e.g i(ar+b) :air + ib
r=1 r=1 r=1

Comments
The last statement of content was contained in CSYS Paper 1. The sequence

n

1+ 1 and its limit should be explored, although it is unlikely that it will be
n

assessed directly.

1
Expansion of 1_, asa geometric series
—-r

Consider the series 1 +r+r° + 7 +r* + .......... where — 1 <7 < 1 i.e. the infinite
geometric series witha = 1.

. 1
e l+r+rr+r+rt+ . =——
1-7 1-7

This geometric series has a sum to infinity

Writing this ‘the other way round” we have =l+r+r+r +7+

—r

. 1 L
ie provided | 7 | < 1 we can expand 1 as the geometric seriesl + 7+ 7% + 7 + 7% + ..

Example 1

Find the value of correct to 5 decimal places.

1 1
5759 =T o01= 1T 00D+ (0-01)% + (0-01)° + (0-01)* + .. (since—1 < 0-01< 1)
=1+0-01 + 0-0001 + 0-000001 + 0-00000001 + ...
=1-01010 (correct to 5 decimal places)
Example 2
1 1
Expand = , where | x | <—
2x+1 1-(-2x) 2
1 1

= 1 +20) + 202+ (203 +...= 1 —2x+4x2— 83+ ...

2x+1 1-(-2x)
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as a geometric series

é)
a
) b 1
Then if we put » = —— we have = —
a a+tb a

The expansion of
a

, 1 1
(i) If | b |<|a|we express as
a+b
a| 1+

1
1-r

and |7 | <1

1
Since . =1+r+72++r*+ ... wehave
-7

= (D (Y (Y]

a 1
Then if tr=—— h = —
en if we put r b we have 0 " 1o,

e =55 ()

A Further Look at (x +y)"

and |7 | <1

In Mathematics 1(AH), we encountered the binomial expansion of (x +y)" , viz.

nln-1) nln=10n-2)
x+p)" =x"+nx"y + —é—'——x”‘zy2 + ————T-—*—x”'ﬂ/:‘ + ...wheren € N.

(1)  puttingx =1,y =-rand n = -1 in this expression we obtain

A=-AT=1+ (D7 +

% I 8 })((—1) -2 s

=1+r+rt+r+......

Comparing this with the expansion of N it would appear that the ‘binomial
—r

expansion’ holds whenn = -1
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1
(2)  Puttingx =1 and y = — in the expression we obtain
n
(1+lj " 4n1m () n(l’l 1)1n 2 ()24 ”l(ﬂ 1)(11 2)1n3 1y
n

(n—=1 (n-—l)(n—Z)
+ +
2!n 3In?
1

=1+1+

1 1 1 2 1 1 2 3
=2+ ‘2—!(1—;) +§(1—;)(1~;) +4—!(1—'n‘)(1—;)(1—;)+--

So,lim(l+ljn:2+i+l+i+ .........
pack R 217317 41
1 1 1 1 1
:2+2+6+EZ+——120+72_0+ .= 2718 (correct to 3dp)

The sum is in fact the non-recurring decimal number which we denote by e.

1 n
Le.e= lim(l + —)
n->e0 n
Exercises

1. Sadler & Thorning  Page 231 Ex.8F Q.1-5

n 1
Yr=—n(m+1) (A proof of this result will be met in the next section.)
r=1

Examples

L. Zr = —><10>< (10 + 1) —%xlell =55
r=1

8 8
2. Y2 =2)r = 2><%><8><9 =8x9 =72

r=1 r=1

[o

6 6 6
3. Dr+3) =Yr+>3 :%x6x7 +3%6 = 21+18 = 39 [ Y 3=3+3+3+3+3+3]

=1 r=1 r=1 r=1

~

DM

5 5
(2r=3) =2)r->3 = 2><—;—><5><6—3x5:30~15 =15

r=1 r=1 r=1

9 3
5. Z 2 %x9x10—%x3><4 45 _-6=139

o

N

6. Z(Zr )= ZZr len(nﬂ)—n:nz

r=1 r=1 r=1

[ie the sum of the first n odd numbers is a perfect square]

Exercises
1. Sadler & Thorning  Page 220 Ex. 8C Q. la,c,2a,c,d,4a,4d,10a,d
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ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

CONTENT

understand the nature of mathematical proof
simple examples involving the real number line, inequalities and modulus.

eg [x+y|<|x[+]y]

understand and make use of the notations =, < and <

know the corresponding terminology implies, implied by, equivalence

know the terms natural number, prime number, rational number, irrational number
know and use the fundamental theorem of arithmetic

disprove a conjecture by providing a counter-example

use proof by contradiction in simple examples
e.g. theirrationality of V2, the infinity of primes.

Comments
Knowledge of notation and terminology will be assumed in the wording of questions.

Notation and Terminology
A statement of the form ‘if........ then ........ ’ is called an implication
e.g. if x=3 then 2x+1=7.

The shorthand notation for ‘if p theng’ isp = ¢

Similarly p = g can be read as g < p which means that g is implied by p. Where
statements p = g and g = p are both true then we write p < g¢q

i.e.p is equivalent togq.

Egx=3& 2x+1=7

Sets of numbers

N = the set of natural numbers = {1, 2, 3, 4,....}
Z = the set of integers = {....-3,-2,-1,0,1, 2,3, ...}

Q = the set of rational numbers ={ ™ meZneZnz 0}
n

. m
Irrational numbers are real numbers that cannot be expressed in the form —:m e Z
n

One such number is v/2. We prove that~/2 is irrational later.

Any positive integer p > 1 whose only positive divisors are 1 and p is called a prime
number.
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The fundamental theorem of arithmetic states that every positive integer can be
expressed uniquely as the product of one or more primes.

e.g.  360=222335 =2%.3%5
416 =2.2.2.2.2.13=2°13
37=37

MATHEMATICAL PROOFS

In the course of carrying out investigations we make conjectures. For example,in the
course of investigating the relationship between the modulii of a pair of numbers, x
and y and the modulus of their sum we might make the conjecture:

[x+y] < lx[+]y]
Such conjectures have then to be proved (or disproved as the case may be).
One form of proof is to work from the truth of one or more already known statements
to the statement we wish to prove true. Linking statements in this way provides a
direct proof.

For example, prove that |[x +y | < |x|+|y|

We know that

(@) |x|=+/x?
®) x| =|x|ly|

and, since one the following must be true: xy >0 or xy <0 orxy = 0, that
() xy < |y
(b) and (c) are true = xy < |x||y]
=Sx*+2x+)* SX+2 x|y |+
=x2+2+y* SxP+2|x]|ly|+|y P [using (a)]

=+ < (xl+]y))?

=+ )? < J(x|+]y]?

=[x+yl = x|+
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Sometimes it may be difficult/impossible to prove a conjecture by direct reasoning as
above and we use an indirect method. One such method is proof by contradiction.
In this method we make the assumption that the statement we are trying to prove true
is in fact false. We then proceed, by means of a direct argument to obtain a
contradiction. Since this is wrong, our earlier assumption must be false and so the
statement must be true.

Prove that /2 is irrational
The statement we wish to prove true is “ 2 is irrational”.

We assume that this statement is false i.e. that \/E IS rational”.

. . m

\/E is rational <:>f = — m,ne€ Z and m and n have no common factor
n
2

m
= 2:'—‘5‘

n
= m® = 2n?

= m* is a multiple of 2
= m is a multiple of 2 (since 2 is prime)
= m = 2p for some integer p

= m?* = 4p*

but m*=2n* = 2n*=4p?
= n*=2p®
=> n® is a multiple of 2

= n 1s a multiple of 2

= n=2

m
We assumed that «/5 = —, m and n have no common factor. hence,
n contradiction!

We have reasoned that m and » have a common factor 2.

Because of this contradiction our initial assumption must be false.

«/5 1s irrational.
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The infinity of Primes

There is an infinite number of primes.

Proof

Suppose that there is a finite number of primes p,, p,, p;,..e...... p, forsome n.
Consider the number N = (p, X p, X p; X.ceue.. xp,)+1.

Now N is not divisible by p,, p,, py,eeeeecnee. or p, since on dividing N by any one of

them leaves a remainder 1.
But N must have at least one prime factor so there is a prime number other than
DisPas Pioeevenenn orp,.

This contradicts our initial assumption which must then be false. Hence there is an
infinity of primes.

DISPROVING CONJECTURES

Not all of the conjectures made during investigations are true and sometimes we need
to prove that a conjecture is false. For example, mathematicians have been fascinated
by prime numbers and many attempts have been made to find an expression which
would yield primes. One such attempt was:

n“+n+4lisa prime number for alln € N

Forn =1, 2, 3, 4, 5,.... the expression yields 43, 47, 53, 61, 71,..... and one might be
tempted to accept that it will always yield primes. However this is not the case.

We can easily disprove the statement by considering n = 41.
When n = 41 the expression yields 41% + 41 + 41 = 41 x 43.

The initial statement that “n” + n + 41 is a prime number for all » € N” can be
disproved by giving a counter-example, viz “n* +n + 41 = 41 x 43 whenn = 417,

Exercises
1. Orlando Gough Page 2 Ex. 1.1:1 Q. 1,5
2. Hunter Page 4 Ex. 1.1 Q. 4b,7

Page 13 Ex. 2.2 Q. 2ab,c,d

Note the fundamental theorem of arithmetic is not contained in Sadler & Thorning or
Orlando Gough.
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CONTENT

use proof by mathematical induction in simple examples

prove the following results : Zr = %n(n +1)
r=1

- the Binomial theorem for positive integers

- de Moivre’s theorem for positive integers

Comments

Straightforward proofs could be asked for in assessments without guidance,
eg 1+2+22+ ... +2"=2"""_1 forallne N

e.g. 8" isafactor of (4n)! forallne N

egn<2" forallne N

Teaching notes

Mathematical induction is often used to prove results containing universal statements

involving integers — statements such as “ p(n) is true forn 22, n € Z.”

The method is as follows:
(a) prove p()) is true, where [ is the lowest value of
(b) assume p(k) is true, where & is an arbitrary integer >/
(c) prove p(k+ 1) is true

The inductive reasoning then is as follows:
p(0) is true, so it follows from (c) that p(/+1) is true.
p(/+1) is true, so it follows from (c) that p(/+2) is true.
p(l+2) is true, so it follows from (c) that p(/+3) is true.
and so on ad infinitum.

Examples
1. Show that ) r = %n(n+l) foralln e N.
r=1

¢ Prove true forn =1.
Whenn=1,LHS =1 and RHS = —;—XIXZZ 1 ..LHS =RHS

Hence statement is true for n =1.

k
1
e Assume true forn =k 1.e. assume Zr =—2—k(k +1).

r=1
e Provetrueforn =k + 1.

k+1 -
i.e. prove that Zr = %k +1k +1+1) = %

r=1

k+DE&+2)
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k+1

7
1!

ir +k+1)

r=1

%k&+D+%+D

:%w+nw+a

Hence statement is true forn =k + 1.

Hence, by inductioan = %n(n +1) foralln e N.

r=1

2. Show that forn € N,

x+y)"= 1"+ nx"'ly + _n(n2~ D x”'zyz + ..+ n(nz— D xzyn’z + nxy”‘1 +y"

¢ Prove true forn =1.
When, n =1, LHS = (x +y)' and RHS = 1.x' + 1" =x +y ..LHS = RHS

Hence statement is true for n =1.

e Assume true forn =k%.

k(k-1) xk—ZyZ .4 k(k-1) xzyk»z k

le. b+ =+ + + ko +y

e Provetrue forn =k + 1.

k(k+1)

i.e. prove that (x + »)*' = ¥*" + (k + 1)’y + ey

k(k2+ 1) xzyk'1+ *+ l)xyk +yk+1

+

x4+ =+ ) +y)

k-1 L%+ k-1 X%y

= + kxk'ly + 5

+ ko )+ )

(this can be simplified to:)

S+ Dy + L‘;l) B T k—(%ii)x@"h (k + Dy’ +y*

1
Hence statement is true forn =k + 1.
Hence, by induction,

G+p)'= x"+nx"y +n(n—_1)x"'2y2 +.. +E(’12;1)x2y"‘2 +nxy” +)" forn e N.
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3. Show that (cosO +isin® )" = cosn® +isinn® forn e N.

¢ Prove true forn = 1.
When n =1, LHS = (cosO + isinf) and RHS = cos8 +isin® ..LLHS = RHS

Hence statement is true orn = 1.

e Assume true forn = k.

i.e. assume (cos® + isin0)f = coskO + isink0

e Provetrueforn =%tk +1.

i.e. prove that (cosO + sin0)“*" = cos(k+1)0 + isin(k+1)0

1= (cos0 + isind )*(cos6 + isind)

(cosB + isinf
= (cosk® + isinkB )(cosB + isinb)
= (coskB cos 0 + icosk0 sin 6+ isinkO cos O + i*sink0 sin 6 )
= coskB cos O - sinkO sin 6 + i(sink® cos © + coskO sin O )
=cos(kO + 0) + isin(k6 + 0)
=cos(k+1)0 + isin(k+1)0

Hence statement is true forn =k + 1.

Hence, by induction, (cos® + isinB )" = cosnf + isinn® forn e N.

4. Showthat » (2r—-1)=(n-2)(n+2) forne N,n2 3.

r=3

¢  Prove true forn = 3.
Whenn=3,LHS=2x3-1=5RHS=(3-2)3+2)=1x5=5
~.LHS =RHS

Hence statement is true for n = 3.

e Assume true forn =£.
k
S2r-1) =k=-2)k+2)
r=3

¢ Provetrueforn =k + 1.

k+1
i.e prove that Z @2r-D=Kk-1k+3)

r=3
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k+1

S @r-1) = N@r-1) +26+1) -1

=k-2)k+2)+2k+2-1

=k -4+2k+1
=k +2k-3
=(k-1)(k+3)

Hence statement is true forn =k + 1.

Hence, by induction, Z 2r-1)=@m-2)(n+2) forne N,n=3.

r=3
5. Provethat1 +2+22+ ... +2"=2"""_1foralln e N.

¢ Prove true forn =1.
Whennzl,LHSzl+2:3andRHS:22—1:3 o.LHS = RHS

Hence statement is true forn = 1.

¢ Assume true forn = k.

ie assumethat 1 +2+22+ ... +2F=2F1_1

e Provetrue forn=%k + 1.
i.e. provethat 1 +2 + 22+ ...+ 2 =Wl =82y
1424224 . 42 (@ 42422+ . 425 42 =001 1 4 ¢!

Hence statement is true forn =k + 1.

Hence, by induction, 1 + 2+ 22+ ... +2"=2""—1foralln e N.

6. Prove that 8"is a factor of (4n)! for alln € N.

. Prove true forn = 1.
Whenn =1,8" =8 and (4n)! =4.3.2.1=24

8 is a factor of 24, hence statement is true forn = 1.

e Assume true forn = k.

i.e. assume that 8 is a factor of (4k)!

e Provetrue forn =k + 1.

i.e prove that 8! is a factor of (4(k +1))! i.e. of (4k + 4)!

(4k +4)! = (4k + 4) (4K + 3) (4k + 2) (4k + 1) (4k)!
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=4k + 1)(4k + 3)2Q2k + 1) (4k + 1) (4k)!
=84k)!k+ 1)k +3)2k+ 1)k + 1)
Thus 8(4k)! is a factor of (4k + 4)! But 8.8 is a factor of 8(4k)!

Hence 8! is a factor of (4k + 4)!

Hence, by induction, 8" is a factor of (4n)! for all n € N.

7. Provethatn < 2" foralln € N.

Prove true forn = 1.
Whenn=1, 2"=2

Hence statement is true forn = 1.

Assume true forn =k%.

i.e. assume that & < 2¢

Prove true forn =k + 1.
i.e. prove that k + 1 < 2/
2P =2 2F S2k=k+k>k+1

Hence statement is true forn =k + 1.

Hence, by induction, n < 2" for all n € N.

Exercises

1. Orlando Gough Page 235 Ex. 5.2 Q. 1- 18 (select)
2. Sadler & Thorning  Page 220 Ex. 8C Q. 3,12
3. Hunter Page 13 Ex. 2.2 Q. 3a,sc,d,e,f,g,i
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