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MATHEMATICS 3 (ADVANCED HIGHER)

Introduction

These support materials for Mathematics were developed as part of the Higher Still
Development Programme in response to needs identified at needs analysis meetings
and national seminars.

Advice on learning and teaching may be found in Achievement for All (SOEID 1996),
Effective Learning and Teaching in Mathematics (SOEID 1993), Improving
Mathematics (SEED 1999) and in the Mathematics Subject Guide.

These notes are intended to support teachers/lecturers in the teaching of Mathematics
3 (AH). The resources referred to within the material are:

Understanding Pure Mathematics,
AJ Sadler and DWS Thorning, O.U.P., 1987 ISBN (-19-914243-2

The Complete A Level Mathematics,
Orlando Gough, Heinemann Educational Books, 1987, ISBN 0-435-51345-1

Mathematics In Action 685,
John Hunter, Nelson Blackie, ISBN 0-17-441027-1

Calculus,
John Hunter (Blackie/Chambers) 1972, ISBN 0-216-89481-6

Numerical Mathemaltics*
Elizabeth West, Chapter 2 (University of Paisley 1990)

Numerical Analysis
C.Dixon, (Blackie Chambers 1974)

Core Maths for A-level
Bostock & Chandler (Stanley Thornes) ISBN 0-7487-0067-6)

* Note that Elizabeth West’s book has been rewritten for the unit Numerical
Analysis 1 (AH) and has been issued to all centres by HSDU.

Mathematics Support Materials: Mathematics 3 (AH)



Mathematics Support Materials: Mathematics 3 (AH)



VECTORS

CONTENT

know the meaning of the terms position vector, unit vector, scalar triple product
vector product, components, direction vector, direction ratios/cosines

¥

calculate scalar and vector products in three dimensions
know that a xb =—bxa

find a xb and a.bXxc in component form

Comments
This content was included in CSYS Paper 2.

Teaching notes

Vectors were introduced in Mathematics 3(H). It is assumed, in particular, students

- know the meaning of the terms: vector, magnitude (length), direction, scalar
multiple, position vector, unit vector, directed line segment, component, scalar
product;

- know and can apply the basis vectors i, j, k

- can use the scalar product to find the angle between two directed line segments.

Notation
Vectors can be written in component form both vertically and horizontally, e.g.

4
a=|a,|ora=Ia,a,a;) . Both forms are used in the solutions offered to worked
a,
examples, although teachers/lecturers may prefer to use the vertical form exclusively,
leaving the horizontal form to indicate co-ordinates of a point.

a.bXc 1s the scalar triple product and is often written as Lz,b,c .

Order of presentation
The order of these notes follows the content order but teachers may wish students to
study the work on lines and planes before proceeding to the vector product.

VECTOR PRODUCT OF TWO VECTORS
The vector product of two vectors @ and b is a vector and is denoted by a X b.

a x b has magnitude | a | X | b | x sinB , where 0 is the angle between a and b.
has direction perpendicular toa and b
has sense determined by the “right hand rule”.
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1If the middle finger of the right hand is held
perpendicular to the thumb and forefinger then x b
if the thumb represents a and the forefinger b
represents b then the middle finger represents 6
axb.

The basis vectors £, 7 and k form a right handed system of mutually
perpendicular unit vectors and an investigation of the vector products of these
basis vectors reveals that:

(i) Jlixi|=]i|x|i|xXsin0=1x1x0=0andsoixi=0
Similarly: jXj =0and kxk =0

In general if @ is any vector thena x a =0 (the zero vector)

(i)  ixj=k, JxXk=i andk xi=j
JXi=-k, kXj=-i and i Xk =+

In general if @ and b are any two vectors thena X b =-b X a

kx (i+j)is avector - what is its relationship with k X7 and & X ?
k x (i+j)

(J

i+j
i

Clearly, i +/ is in the plane defined by i and j and has magnitude 2 and makes an

angle of JEZ with the direction of 7 as shown on the left.

kx (i+)) is Lirtok so lies in the plane of { andj

kx (i+))is Irto i +J so makes an angle of 3;: with the +ve direction of 7

e X (i+)|=|k|x|i+] sin90°=+2.

Thusk X (i+j) =j-1

NowkXxi=jandkXj=-i sokXi+kxXj=j—i Hencek X (i+j)=kXi+kxj
Can we generalise this statement for any three vectors @, b and ¢ ?

In fact we can: axX{b+c)=axh + axc

Note: The above result is not stated in the content for this unit but needs to be
assumed in order to express the vector product in component form. For
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completeness a justification of this result is included at the end of this
section.

Vector product in component form
a b,
lfa=|a, |and b=|b, |, then axb=(ai+a,j+ak)xbi+b,j+bk)
a; by
axb=abixitab,ixj+abixk
+ah fxi+tab,jx j+a,b, jxk
+abkxi+abkxj+abkxk
= (ab, —ab, Ji+(ab, —ab, )j+lab, —a,b, )k

a,b; —asb,
Hence axb=|a;b, —ab,

ab, —a,b,

Determining the vector product

axb={ab;—ab,)i+lab —ab,)j+(ab, —ab, k

There are a number of techniques that are used to help in carrying out the process of
calculating the components of a X b. Two of these are mentioned here.

(i) Write down the components of the two vectors as shown — the first one on top
and starting and finishing with the second component.

SN
bZ bi bl bz

The components of a x b are the differences of the cross products.

Mathematics Suppori Materials: Mathematics 3 (AH)



2 1
For example find | 3 |x| -2

~1] 1 3
3 -1 2 3 ©- 2 7
X X >< Thusaxb=|(-1-6) |=| -7
-2 3 17 -2 (~4— 3) -7

(ii) using determinants

axb={(ab,—ab,)i+lab —ab,)j+lab,—a,b, )k canbe written using 2 x 2
determinant notation giving:

axb=a2 a3l_+a3 a, a;,  d,
2 b3 b3 bl bl b?,
it a3, | as'j a, da,
b2 b3 bl bB b] bZ
i j ok
Thus axb=\a, a,a,
b..’ bZ b.?
2 1
For example find | 3 |x|—-2
-1 3
i j k
axb=12 3 -1 =09-2)i-(6-C1))f +(-4-Dk=7i-7 -Tk
1-2 3

Note: Determinants appear later in the content of this unit. Teachers/lecturers
may introduce them earlier if they favour the latter approach. If not then
it should be included later as an application of the use of determinants
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WORKED EXAMPLES

Example 1
P, Q and R are the points (0, 5, 1), (3, 2, 1) and (-2, 5, -3) respectively.

a) Find [PO|x [P
b) Hence calculate the area of triangle PQR.

Solution
3 -2 3 -2 12
a) PQ=-3,PR=|0 |= PQxPR= -3|x|0 [= 12
0 —4 0 ) |-4] |-6

b) Areaof APQR = ém area of parm.
1 . == -
= 5 PQ.PR.sinP = ElPQxPR'

- % 144 +144+ 36 = 9sq units.

Example 2

The three sides of a triangle

represent the vectorsa, b and ¢ C
suchthata +b+c =10
Prove
(bXc=cXa=axh
(ii) the Sine Rule for AABC c

Solution

(1) bxc=-la+c)Xc=ecxXxla+c)=cXa+cXc=cXa
exa=-la+b)xa=axl@+by=axXa+axb=axh

(i)  Sincebxc=cxa |b|cisin(180°—A) = |c|ja|sin(180° -B)

That is bcsinA = casinB Hence bsinA = asinB etc

Mathematics Support Materials: Mathematics 3 (AH)



SCALAR TRIPLE PRODUCT

If a, b and ¢ are vectors then a . (b X ¢) is a scalar and is an example of a scalar triple
product

Now b X c= (b,c; —byc,)i+be, —bey)j+be, —b,e)k

so a.(bxc)=albe,—be,)+a,lbe —be,) +a,be, —b.c,)

a, d; 4,
Hencea.(bxc)=p, b, b,
€ € G

Geometrical significance of scalar triple product
The diagram below shows three vectors @, b and ¢ and the vector product b X ¢. The

angle between b and ¢ is 0 and the angle between b X ¢ and @ is ¢. The parallelepiped
with @, b and ¢ as three edges has been drawn.

—

a
bXc
- /
1/
b X ¢ has magnitude | & | X | ¢ | X sinB and is perpendicular to the base of the
parallelepiped.
Hence a.(xc) =|a|x{b|x|c|xsind)cos =|a|lb| c|sind cos¢

= (b | c|sind)(|a icosd) = area of base x height
= volume of parallelepiped

WORKED EXAMPLES

Example 1
Hfa=2i+3 -k, b=-i+j+ 2k, and c¢=3i-2+k

Find D a.(bxc) () b.lexa) (i) c.laxhb)

Solution
—1 3

i) bxe)=|11Ix|-2=5i+7*k - a.bxe)=10+21+1=32
2 1
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3 2

ii) fexa)=|—-2|x| 3 |=-i+5%5+ 13k Lholexa)=1+5+26=32
1 -1
2 -1

iii) laxb)=| 3 x| 1 |=7i-3+5k -.c.laxh)=21+6+5=32
-1 2

Example 2

In a tetrahedron OPQR, O is the origin and P, Q and R have position vectors relative
to O givenby p =21 +2k, ¢ = 2i +j and r = -i +2f + k respectively.

i) Find pxgq and hence prove that OR is perpendicular to the plane OPQ.
i) Calculate the area of the triangle OPQ and the volume V, of the tetrahedron.
iii) Calculate p.(gxr) and verify that it is equal to 6V.

Solution
2 -1 -2 -1

i) p=|0lg=|1|r=|2 |= pxg=|4 |=2/2 {=2r
0 1 2 1

and so a normal vector for plane OPQ is parallel to r, 1.e. OR _Lr plane OPQ.

i)  Areaof AOPQ = !|pxg|=1v4+16+4 =6 units®

V= %area of base x height = ;«/gX]r = %JEXJE = 2 units’

1 231
iit) gxr=| -2 pgxr=|0}~2|=2+0+10=12=6V
5 215

Example 3

H two vectors @ and b are perpendicular and equal in magnitude, show that vectors u
and v defined by u = 2a + b and v = a — 2b are also perpendicular and equal in
magnitude.

Show also that uxv =-5(axh).
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Solution

ab=0,a|=1b|

wv = (2a+b).(a—2b) 5 #\
=2al" ~4a.b+ba—2b| s
= 2af* - 28] =0 ’

Hence # and v are perpendicular.

Now, ul = \v|, (both :«/ﬂa}) SO ‘uxv‘ = \u\]v‘sin%” =5|a|2.

But Jaxb}:|a|b‘sin90°:|a‘2. Hence |u><v|:5‘a><b‘

a, b, u and v, are coplaner. Using the right hand rule & X v is directed “into the page”
and a X b is directed “out of the page”. Hence, u X v=-5(a X b).

Example 4

A plane passes through the points A, B and C with position vectors @, & and ¢
respectively.

Show thatv = b X ¢ + ¢ Xa +a x b is normal to the plane unless v = 0.

If v =0, how are the points A, B and C related?

Solution

AB=b-a and BC=c—b.

The normal vector to the plane is parallel to (b —a) X (¢ — b)

Now (b—a)x(c—b) =bx{c—b)—ax{c—-b)
=hxXc-bxbh-axXc+axbh

=hxc—-0+cxXa+axh whichisv
Hence v is normal to the plane.

If v=0,then b —a and c — b are parallel.
ie. AB and BC are parallel, ie. A, B and C are collinear.
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CONTENT

know the equation of a line in vector form, parametric form and symmetric form
know the equation of a plane in vector form, parametric form, Cartesian form

find the equations of lines and planes given suitable defining information

find the angles between two lines, two planes [A/B] and between a line and a plane

find the intersection of two lines, a line and a plane, and two or three planes

Comments
This content was included in CSYS Paper 2.

THE EQUATION OF A LINE

The diagram shows a straight line, in the
direction of the vector u, passing through the
point A, with position vector a.

i) If P is any point on the line, with position vector r then:
F=a+ iu { where A is a scalar)

This is the vector equation of the line.

i

i) If A is the point (a,,a,,a,) andu = | u, |and P is the point (, y, z) then
X a, u,

yi|=|a, \+n|u,

z

a, U

Thus x=a,+hu,, y=a,+ru,, z=a,+hu,

Mathematics Support Materials: Mathematics 3 (AH)
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These are the parametric equations of the line passing through {(a,,a,,a,) in
ul
the direction of | «, |.

U,

i1} If we eliminate A from these equations we obtain
x—a, y-a, z-a,

ul U, Uy
This is the equation of the line in symmetric form passing through
s
(a,,a,,a;) inthe direction of | u,

Uy

Example
Find the equation of the line passing through the points A(1, 2, 3) and B(2, 3, 5} in
{a) vector form, (b) in parametric form and (c) in symmetric form.

Solution
(a) a =i+ 2 + 3k and line is in the direction of AB =(1,1,2) =i+ +2k

so the vector equation of the line is r= (0 + 27 + 3k) + A(7 +j +2k)
{b) the parametric equations arex =1+ A, y=2+A, z=3+2A

x=-1_ y-2 z-3
1 2

{b) eliminating A we obtain

THE EQUATION OF A PLANE

i) Suppose that P (with position vector r) lies in
the plane which passes through the fixed point
A (with position vector a ), and that # and v
are two non-parallel vectors in the plane.

Then[r =a+Au+ v} (where A and L are
scalars)

This is the vector equation of the plane.
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x=a, +hu +uvy

then |y =a,+Aiu, + v, andthese are parametric equations of the plane.

z=a,;+hu; +Uv,

[#]
iii) Further, if vector m = | b | is perpendicular to the plane, i.e normal to the plane
C

thenn . ﬁ =0

nAP =0 =n.r—a)=0=n.r=n.a *
n.r =ax+by +czand n.a=aa, +ba, + ca;

soax + by +cz = aa, +ba, + ca;

Now, aa, +ba, + ca; is constant, for convenience let aa, +ba, + ca;=—d.

Hence |[ax+by+cz+d=0]

This is called the Cartesian equation of the plane.

It is important to note that the coefficients of x, y and z, in the Cartesian equation
of the plane namely a, b and ¢ are the components of a vector perpendicular to the
plane.

A line at right angles to a plane is called a normal to the plane.
a
Hence the vector | & |is normal to the plane ax + by + cz + d =0

c

* Note the equation is a vector equation and is sometimes referred to
in textbooks as the vector equation of the plane (in dot product form).
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Example
Find the equation of the plane passing through the points A(3, -2, 0), B(2, 0, 3) and
C(1, -1, 1) in a) vector form, b) parametric form, and ¢) Cartesian form.

Solution
3 -1 -2
a) The position vector of Ajs | -2 | and AB=|2 |and AC =|1
0 3 1
3 -1 -2
Thus the vector equation of the plane is r =| -2 |+5| 2 |+¢ 1
0 3 1
b) From a) the parametric equations are
x=3-s5-2¢f
y=-2+425+¢
z= 35+«

-1y (-2 i J k
¢) The vector ABXAC =12 |x|1 =-1 2 3|= -i -5 +3k is normal to the
3 1 -2 1 1
plane so the equation of the plane is —x -5y +3z +d =0
But A(3, -2, 0) lies in the plane so -3+ 10+ 0+d =0 ied=-7
Hence equation of the plane isx +5y -3z +7=10

THE ANGLE BETWEEN TWO PLANES [A/B]
The angle between two planes is defined to be the angle between their normals.

Example
Find the angle between the planes with equations

x+3y—z-5=0and2x—y+z+7=90

Solution
Normal vectors to the planes are ny = (1, 3, -1) and 1, = (2, -1, 1) so angle between
; hn, 4 -2

= o8 —m—
| X[, J11x+/6

Hence acute angle between the planes is 75.7°

= 104-3°.

the planes is cos”

Mathematics Support Materials: Mathematics 3 (AH)

14



THE ANGLE BETWEEN A LINE AND A PLANE

The angle between a line and a plane is defined to be the angle between the line and
the projection of the line on the plane.

The diagram shows a line / and a plane I1.
The line p is the projection of / on IL
The angle between the line / and the plane 11 is 0.

In practice it is usually more convenient to find the angle between the line and a
line perpendicular to the plane and then take the complement.

Example

Find the angle between the line with equation a ; 2. % _E0

and the plane with

equationx — 2y — 2z -5=0

Solution
The line is in the direction of vector v = (3, 12, 4). A normal vector to the plane is
n={(1,-2,-2).

: : _ . 4 —29
Angle between line and normal to plane is cos™ Y cosT .
n|x|v| 3x13

Thus acute angle between the line and the normal to the plane is 42-0°.
Hence the acute angle between the line and the plane is 48-0°

INTERSECTIONS OF LINES AND PLANES

WORKED EXAMPLES

Example 1
Prove that the lines with equations
x—4___y+lzz—2 ¢) and x—5:y+l:z—3
3 -2 1 2 -1 1

intersect, and find an equation for the plane containing them.

)
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Solution

The lines will intersect if
(a) the direction vectors, say u and v, are such that & #kv and
(b} they have a point in common.

The equations are given in symmetric form from which we can say that the direction
3 2
vectors i and v are | — 2 | and | —1| respectively. Clearly u #kv for any £.
1 1
To determine whether they have a point in common, we must write the equations in
x—4 y+1 z-2
-2 1
i.e. any pointon/; is givenby (3r+ 4, -2t — 1, ¢ + 2)

parametric form. Thus, for /;: =, say.

Similarly, any point on [, is given by (2s + 5, -s — 1, 5 + 3), for some parameter s.

If the lines intersect, there will be a unique solution for the system of equations

Jt+d4=25+5
2t-1=-s-1
t+2=5+3

Solving the first two equations gives ¢ = -1 and s = -2. Check this solution in the last

equation. Hence ¢ = -1 and s = -2 1s a unique solution and the point of intersection is
(1,1, 1).

3 2 -1
uxy=|-2 x| -1|=|~-1
1 1 1

-1
—1] is a normal to the plane so, the equation of the plane is —x — y +z = d;
1

but (1, 1, 1) lies in the plane, so -1-1+1=d, ie.d=-1

and the equation of the plane is -« — y + z = -1, which can be rewritten asx +y —z = 1.

Example 2

The plane T1, passes through A(3, 1, -1) and has a normal parallel to the vector
(1, -2, 1). The plane IT, has equationx —y = 1.
Find:

(a) the size of the acute angle between IT, and IT,,

{(b) parametric equations for the line L of intersection of the planes.
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Solution

(a) Angle between 11, and I1, = angle between the normals

(b)

i.e. angle between (1, -2, 1) and (1, -1, 0), say 0

1ilo
A0) 142 3 gﬁ::e:mo

Vo2 W12 243 2

(c) L is perpendicular to both normals, i.e. parallel to their vector product

cosf =

1 1 1
-2 x| -1|=|1
1 0 1
Equation of II, : x-2vy+z=d = 3-2-1=d, since A lies on IT,

i.c.d =0 and equationisx —2y +z=0

Equation of TT, isx—y=1

Solving x-2y+z=0
x—y=1 Takingz =0, wehavey=1,x=2

Thus the point (2, 1, 0) lies in both planes and therefore on L, the line of intersection.

X 2 1
Equation of L. : yi=11|=11y,
z 0 1

ie. x=¢+2, y=t+1, z=t are parametric equations of L.

Example 3

Show that the planes with equations
x—3Jy—-2z=1
X -2y =5

2x -3y + 2z =14

all intersect on a line and find parametric equations for this line.
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Solution

IT, :x -3y -2z =1, normal vector a = (1, -3, -2)
IT,:x—2y =5 , normal vector b = (1, -2, 0)
[1,:2x -3y + 2z =14, normal vector ¢ = (2, -3, 2)

For line of intersection of ITy and I'Ty , direction vector is parallel to a x b,
iLe. (-4, -2, 1).

l@axhec=-4x2+(2)x{(-3)+1x2=0
so line of intersection of I'l; and IT; must be parallel to I1;.

To find a point on the line, putx = 0,

~3y-2z=1
yoer =3 :*E,z =E, i.e. point (0,—~§, E) lies on line.
~2y=5 27 4 2" 4

Does this point lie in I13?

2X0+(-3) x (—g) + 2% ? =14, ie. point lies in I1;.

X 0 —4 - .
Equation of line: | y |—| -2 (=¢| -2 :>x:—4t,y:—2r—z, z=f+ —
z 13 1

4

Example 4

Find a vector equation for the line joining the points whose position vectors
are 2i —j + k and —3i + 2k, and hence find the point at which it meets the plane with
equation r=p(i +/) + g(2i —j — k), where p and g are parameters.

Solution
2 -3 5
Direction vectorof line= | =1 |—| 0 [=| -1
1 2 -1
2 5
Equationisr- | =1 |=¢ -1 e r=0Gr+2i— @+ 1)+ (1 -0k
1 -1
Where line meets plane Ge+2)i— @+ 1)+ (1 -0k=pG+j)+q2i—j—k)

=p+2q)i+{p-q)-qgk
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It follows that S5t+2=p+2g

t+1 =p+gq = p=-2
-t =-g
Also, 6+ 3 =3¢ ie. 2t+1=g

+t+1=-g =t=-2
and by substitution, g = -3

Hence r = -8{ +j + 3k i.e. the point is (-8, 1, 3)

Mathematics Support Materials: Mathematics 3 (AH)
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TERMINOLOGY

The Direction of a line
The direction of one point from another is given by the ratios

X step: y step: z step.
For example if A is (1, 3, 2) and B is (3, 4, 1) then
x step:ystep:zstep=2:1:-1
and the direction of AB can be described in terms of the direction ratios 2 : 1 : -1
/
If OP=|m | then its direction ratios are [ : m : n

n

The direction of a line may also be determined by the angles the line makes with the
positive direction of the axes.

Suppose OP above makes angles of 8, ¢, and ¢ with the positive directions of ¢,
i|OP| I
|i]x|OP| | OP]

and k respectively, then cosB =

Similarly cos¢= 2 and coso=——r
|OP| | OP |

. D o . . I m n
Hence if » =|OP |=+1* +m® +n* the direction cosines of the line are —, — and —
ror r
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EXERCISE ON VECTORS

1. By using vector products, find the area of the triangle with vertices A(1, 3, -2),
B(4, 3,0) and C(2, 2, 1).

2. A line passes through a point A with position vector @ and is parallel to a vector b.
If P is a general point on this line with position vector r, state the vector equation
of the line.

Show that the plane containing this line and parallel to another line with direction
vector ¢ is given by
r.lbxcy=a.bxc)

3. (a) Find parametric equations for the line / joining the points (-1, 1, -4) and
(5,4,-1).

(b) Give the co-ordinates of the point of intersection of the line / and the plane IT,
whose equation is x + 2y —z =11, and find the angle at which / meets TT.

(c} Find also an equation for the plane containing / which is perpendicular to IT.

—4
1

4. TFind parametric equations for the line / joining the points (3, 1, -2) and (-5, -1, 2).
Show that the plane which is parallel to / and contains the line xT—l = LZ z

has equation x + 2y + 3z = 13.

2 -
5. Show that the lines with equations ler =2 15 = ZJ2r3 and

x-3 y-8 z+1

1 3 -2
equation for the plane in which the lines lie.

intersect and find their point of intersection. Find an

6. (a) Find parametric equations for the line / of intersection of the planes
2¢—4y+z=1and x+y-z=5

(b} Given the co-ordinates of the point of intersection of the line / and the plane [T
whose equation is x +z = 1, and find the size of the angle between [ and T1.

7. Show that the three planes x—5y+22+1=0
2x+y—-3z+5=0
5x -7y +2z+3=0
meet in one line, L;, and find parametric equations for L.

Show that L; meets the line L; with equations 6x = 3y = 2z, and find the co-
ordinates of the point of intersection.

Find also an equation for the plane containing L; and L.
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ANSWERS

1. %«/5

3.0 x=2t—-1,y=t+1,z=¢t-4 () (3, 3,-2); 30°
4, x=4+3, y=t+1, z=-2t-2

5 (1,2,3; x—y-z+4=0

6. (@ x=t, y=r-2,z=2t-7 (b (§,%-2); 60°
7. x+2=y+1=z=¢; (1,2,3); x-2p+z=0

Mathematics Support Materials: Mathematics 3 (AH)
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Justification of theresulta X (b +cl=axh + aXc

Let directed line segments &, 5§, &, and E)B represent the vectors a, b, ¢
and b + ¢,

In the diagram on the left By,
Ci and Dy are the projections
of the points B, C and D onto
the plane IT, the plane through
O .Lrto OA. Thus:

0B = OBcos2BOB,,
0Dy = ODcos2ZDOD; and
OC; = OCcos2COC,

Since OBDC is a parallelogram then so is OB;DC,
Since the plane DOD; is perpendicular to IT it follows that OAxOD and

OAx 0D have the same direction and sense and lie in the plane IT .

|OAXOD | = OA.ODsinZAOD = OA.ODcos 2 DODi= OA.OD, = |0AxOD; |
. OAXOD = OAxOD; ie ax (b +¢) = OAXOD,
~lax (b+c)|=|0A|x|OD, | (since OA L ODy) anda X (b +¢) is Lr OD;

Hence a x (b + ¢) can be represented by a directed line segment OD, lying in
the plane IT, perpendicular to OD; with length OA.OD,

Similarlya x b = OAxOBs and hence a X b can be represented by a directed
line segment O—B2 in the plane 11, perpendicular to OB with length OA.OB,

Similarly a X ¢ = O_.AXO_C;I and hence a X ¢ can be represented by a directed

line segment (TCZ in the plane IT, perpendicular to OCy with length OA.OC,

Drawing the directed line segmentsOD, , OB, , OC, in the plane [T we obtain
the following:

It follows that OB-C;D> is a

parallelogram so OD, =0B, +0C,
and therefore

[ax(b+c):axb+a><c|

Mathematics Support Materials: Mathematics 3 (AH)
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RESOURCES

Vectors & Coordinate Geometry

Understanding Pure Mathematics (Sadler & Thorning)
Section 2

Analytical Geometry and Vectors (Hunter)

The Complete A Level Mathematics Orlando Gough
Chapter 6
Section 6.1 — Vectors [NB no ref to vector product or triple scalar product]
Section 6.2 — Coordinate Geometry in two dimensions
Section 6.4 — Coordinate Geometry in three dimensions
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MATRIX ALGEBRA

CONTENT

know the meaning of the terms matrix, element, row, column, order, identity matrix,
inverse, determinant, singular, non-singular, transpose

perform matrix operations: addition, subtraction, multiplication by a scalar,
multiplication, establish equality of matrices

know the properties:
A+B=B+A

AB+# BA in general
(AB)C = A(BC)
AB+(C)=AB+ AC

(A) =A
(AB) =B'A’
Comments

This content was contained in CSYS Papers 1 and 2.

The list of properties is more extensive than the matrix content of CSYS Paper 1.

Teaching Notes

Matrices were introduced in Mathematics 1(AH) in the context of solving systems of equations and
students should be familiar with the terms : matrix, element, row, colums, order of a matrix,
augmented matrix.

Operations on matrices were not covered in Mathematics 1(AH). Teachers may wish to consider some
appropriate situations were matrices are used to record information in a rectangular array of numbers
providing a context for introducing the addition and multiplication of matrices.

Maost graphic calculators have a matrix facility and are especially useful when manipulating large

matrices. Students could ‘establish’ some of the properties of matrices through the use of these
calculators.
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Matrix Notation
When we are considering a general matrix A it is common practice to denote the element in the i th
row and the j th column by a; and write

A=lay]
Some authors take this a stage further and write
A= a!-j-]mx,, to indicate the order of the matrix
The Arrangements do not specify any particular notation.
Using this notation we can write
If A and B are of the same order then;
A+B=la;, byl
If A and B are of orders p x ¢ and ¢ x r, respectively then:

i h

AB =[c; ] wherec; = Za. b
A

The transpose of A is A" where

A'=[a'y] where a'y=a;

MATRIX ALGEBRA

In the course of practising finding sums and products of matrices, if suitable examples are provided
students should quickly conjecture that:

A +B=B+ A butthat AB # BA in general
{AB)C=A(BQC

AB+C)=AB+AC

(AB) =DB'A’

They could also investigate the effect of multiplying appropriate matrices by matrices of the form

100
0 1 0 |leading to the introduction of the identity matrix I =[e;], wheree;=1ifi=jande;=0

0 01
it

Students do not need to be able to prove these results but establishing some of these results formally
would illustrate direct proof and the usefulness of the notation.

Proof of: (AB)' = B'A’

Suppose A has order m x n and is defined by [ a;] and B has order n X p and is
defined by [ &; .

AB has order m X p and so the transpose matrix (AB)’ has order p x m.

B’ has order p X # and A’ has order n X m so B’A’ also has order p x m.
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Since AB is defined by | ¢; | where ¢;; = Zaﬂbu then (AB)’ is defined by
A

[¢'; I wherece'y=c; = Zajubw' ,
u

— ’ — f —_ f 4 — t r
but b.ui - bm and @p =4a, S0 Zafubw' - Zaufbiu - Zbi.uaw‘
m » H

Tt

ie (AB)’ is defined by [ ¢; | where ¢'; = Zb.' a’
"

which is the matrix B'A’ of order p x m,

i.e. (AB) =B'A".

CONTENT

know the properties

(AB)' =B'A"
det (AB) =det A det B

calculate the determinant of 2 X 2 and 3 X 3 matrices
know the relationship of the determinant to invertability

find the inverse of a 2 X 2 matrix

Comments

This content was contained in CSYS Papers 1 and 2.
Teaching Notes

1 . 1. .
In the algebra of numbers ax =1= x = —and we writex =a Yie aal=1.
a

In matrix algebra we investigate the possibility of finding for a matrix A, a matrix X
such that AX =1

THE INVERSE OF A 2 x 2 MATRIX

b 10
Consider 4 = (a dJ then if AX = (O 1} it follows that X has order 2 x 2
c

+b +b
Let X = P then AX = pToreqTes
ros cp+dr cq+ds

ap+br aq+bs 1 0
and AX=1 = =
cp+dr cg+ds 01

= agp+br=1 (i)
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ag+bs=0 (il
cp+dr=0  (iii)
cg +ds =1 (iv)

d(i) - b(iii) = ad —bo)p =d
aliil) —¢fi) = (ad — bc)r = ¢
d(ii) — bliv) = (ad — bc)g = -b
aliv) —clii) = (ad - bc)s = a

1 d —b
Hence, provided (ad ~ bc) # 0 X =
ad —bcl—-c a

1 d —-b
Thus A has an inverse, namely, if (ad —bc) 20
ad —bc\—c a

the value of the expression (ad — be) determines whether or not A has an inverse and
is called the determinant of A (cf the value of the expression b° = 4ac in relation to
the quadratic equation ax” + bx + ¢ = 0)

a b
The “determinant of A” is written as detA or | 4 |, and we denote (ad — bc) by d'
c
) . B 4 1 d —b
The inverse of A is denoted by A" and 4~ =
detAl—¢ a
Note
1) If det A =0, A has no inverse and is said to be singular.
ii) If det A # 0, A has an inverse and is said to be non-singular.

i) We have established that 44" = 1.
Students should verify by multiplication that 474 =1

_ a b\ 1 (d -b
iv) Students should know that =
c d ad —bc\—c a
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(AB)! =B A’

In the course of practising finding the inverses of suitable matrices through the use of appropriate
examples students could be led to conjecture that (AB)' = B'A™!

Proof of (AB)” =B'A",  where A and B are non-singular square matrices of
the same order.

(B'AN(AB)=B'(A'A)B (AB)(B'A) = A(B'B)A™
=B'IB =ATAT
=B'B , = AA™
=1 =1

Hence B'A™ is the inverse of AB, i.e (AB)' = BA™

THE DETERMINANT OF A 3 x 3 MATRIX

a b ¢
Forthe matrix A={d e f
g h i
a b ¢ o A
e e
detd=ld e f:ah ,-«b‘ |+ k:a(ei—fh)—b(dz'-fg)+c(dh—eg)
i i g i
g A i

Note: In the section of these notes dealing with the calculation of the
components of a vector product two techniques were mentioned, one of
which involved a 3 X 3 determinant. If the other method was used
initially then the attention of students should now be drawn to the
determinant method.

det (AB) = det A det B
Whilst practising calculating the determinants of 2 x 2 and 3 X 3 matrices students
may be led to conjecture that det (AB) = det A det B.

Proof of det (AB) = det A det B
The proof offered here is for 2 X 2 matrices

o[t SJuna(t 4] apefrnt ]
det AB = (ap + br)(cg + ds) — (cp + dr)lag + bs)

=apcq + brds + breg + apds — cpag — drag — cpbs — drbs

= breq + apds — drag - cpbs

=ad(ps —gr) — bc(ps —gr)

= (ad — bc)(ps — q7)

=detd det B

(The proof for 3 x 3 matrices is more difficult. The proof is in Hunter p.185.)
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CONTENT

find the inverse, where it exists, of a 3 X 3 matrix by elementary row operations

know the role of the inverse matrix in solving linear systems

Cominents
‘*know the role of the inverse matrix in solving linear systems’ was in CSYS Paper 4

‘find the inverse, where it exists, of a 3 X 3 matrix by elementary row operations’ is
new content.

Note: A can also be found using the adjugate (adjoint) method. This method is
illustrated at the end of this section.

Teaching Notes

Students will be familiar with elementary row operations through using them to solve
systems of equations in Mathematics 1(AH)

FINDING THE INVERSE, WHERE IT EXISTS, OF A 3 X 3 MATRIX BY
ELEMENTARY ROW OPERATIONS

The method is illustrated for the matrix

N

il
NST N N
S R
LS

We construct an augmented 3 X 6 matrix with the first three columns, the columns of
A, and the other three columns, the columns of the 3 % 3 matrix L.

21 4|1 0 O
1 0 210 1 O
2 3 1|0 01
We then proceed to apply elementary row operations to the rows of the matrix with
the purpose of obtaining a matrix whose first three columns are the columns of 1.

2 41 0 0 1 ¥ 2% 0 0 rowr%%rowi
1 201 00> |1 0 2|0 1 0
2 110 0 1 2 3 10 01
v 2145 00
- 10 =) 0 |=-% 1 0| row, >row,—row,
0 2 -3|-1 0 1] row,—row;—2row
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1 B 2 1) 0 0
01 0,41 -2 0| row,—=>-Zrow,

0 -3|-3 4 IJ FOW, — FOW; — 2row,

0

_
[ = R AN
== X

_4 1
A} Fow, —)M—T‘OW

Lu

1 0 1 -2 0

1 ¥ 0 -% % % row, — row, — Zrow,
01 1 -% -4

1
1 0 0i-2 Y% % FOW, — row, —Erow2
- 30 1 011 -2 0
00 1|1 % -Y
The first three columns of the resulting augmented matrix are the columns of I and the remaining
-2 I% %
columnsproduce | 1 -2 0
L =% -5
—2 0w %21 4 (100
Now 1 -2 0O (|1 0 2|=|0 120
1 -4 -4¥l12 31 0 01
-2 Y %
andhence A= 1 -2 0
L =% -5

Note A justification of the above procedure for finding the inverse of a 3 X 3
matrix is included at the end of this section.

Knowing A" we could, for example, solve the system of equations
2x+y+4z=0
X +2z=-
2Zx+3p+z=7

The system of equations can be represented by :
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X 0 X 0 X 0

Ayl=|-1] = AT'A y =47 ~1| = (A74)| y =47 ~1
g Y
z 7 z 7 z 7
Y (=2 W % Y0 1
=|yl=|1 =2 0 |-1|=|2 = x=1Ly=-2,z=-1
z 1 =% —-ui7 -1

INTERSECTION OF THREE PLANES

There is an obvious link to the outcome on Vectors in this unit. Essentially, the equations of three
planes can be represented as a system of three linear equations.

a1x+b1y+clzxa'] a, bl o X
axx + by + 2z = d, which can be written in matrix form:

asx + by +cz=ds

a; by ¢
T
a, b, c, = 0 (hen the equations do not have a unique solution.
a, by c

Either (1) there are no solutions and the equations are inconsistent; or
(2) there are an infinite number of solutions, and

all the planes are the same,
or two of the planes are coincident

or the three planes have a comrmon line.

Note Just as the determinant of a 3 X 3 matrix was expressed in terms of the
determinants of three 2 X 2 matrices so the determinant of a 4 X 4 matrix can
be expressed in terms of the determinants of four 3 X 3 matrices etc. [t can be
shown that, in general, a matrix A of order # X n has an inverse provided
detA # 0.

CONTENT

use 2 X 2 matrices to represent geometrical transformations in the (x, y) plane

Comments
This content was contained in CSYS Paper 2.

The transformations should include rotations, reflections, dilatations and the role of
the transpose in orthogonal cases.
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Teaching Notes

Under a given transformation, (x, y) is mapped to (x', ') where x' = ax + by,
' =cx +dy. This can be expressed in matrix form as

a bix)_ x'

c dly Bl ¥y

a

and the matrix (

) is said to be associated with the transformation
¢

(x, ) — (', ¥}

s (120 2] 2

Thus if we know the images of {1, 0) and (0, 1) we can write down A. This
is a useful technique to employ when finding the matrix of a matrix

transformation.
Special cases s 4
(0,1 1,1
Reflection in the x-axis. ) )
Consider the unit square. P »
Here (1, 0) = (1, 0) ’ *
and (0, 1) — (0, -1) (0.-1)
S0 is the matrix associated with reflection in the x-axis.

1 0Ya a . ) o )
check {0 }[ ] =( } ie {a, b — (a, -b), i.e. reflection in the x-axis.

Students should be given the task of finding the matrices associated with other simple
transformations and compiling a table of results.
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TRANSFORMATION MATRIX
1. Identity 1 0
2. Reflection in x-axis 1 0
3. Reflection in y-axis -1 0
0 1
4. Reflection in y =x 0 1
1 0
5. Reflection in y = -x 0 -1
-1 0
6. Half turn about O -1 ©
0 -1
7. Rotation about O of % radians 0 -1
2 1 0
8. Rotation about O of -~ radians 0 1
2 -1 0
9. Dilatation [O, &] r 0
0 %
10. Rotation of 6 radians about O cosd —sinB
sin@  cosB

Investigating Further
Students could investigate the following

1.

In transformations 1 to 6 and 9 the transpose of the matrix is the matrix itself
ie. MM'=MM =M?*

In transformations 1 to 6, MM ' =1 but this is not the case in transformation 9.

What is the relationship between M ™' and M’ in transformations 1 to 67

What is the inverse of the matrix in transformation 9?

The transpose of the matrix in transformation 7 is the matrix in transformation 8
and vice versa.

What is MM ' equal to in these two cases?

What is the inverse of the matrix in transformation 77

What is the inverse of the matrix in transformation &?

What is the transpose of the matrix in transformation 107
What is MM’ equal to? What is M ™ equal to?
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Link with complex numbers

In Mathematics 2(AH) students studied transformations in the complex plane defined

in terms of operations on the complex numbers.

For example

a) in the transformation defined by z — z
X+ > x—1iy

In co-ordinate terms (x, y) — (x, -y} ie reflection in the x — axis which we have noted

0
s a matrix transformation with matrix 0

b) in the transformation defined by z — iz
X+iy —>—-v+ix

i 4
In co-ordinate terms (x, y) = (-y, x) Ie a rotation about O of E radians which we have noted is a

0 -1

matrix transformation with matrix 0

WORKED EXAMPLES (miscellaneocus)

Example 1
p+3 p

g g+3
If 3X = XA, find x in terms of p, g and y.

Matrix 4 = and the matrix X = (x V.

If, further, x + y = 1, find x in terms of p and g.
Solution

+3
X=X4 = (3x 3y):(r y{p i3}=(ADX+3X+QV prtqy+3y
q q

Equating corresponding entries

Ix=px+3x+qy = pxX = -qy = x= 2
P
. . —qgll-
Hx+y=1, y=1-x, substitute in the above to get x = Zql=»
P
ie. px=-g+gx =gr-px=gq =xlg-p)=gq —x=—d
q-p
Example 2
12 , . (3 -2
Evaluate M 14 where M is the inverse of the matrix . Al
Hence solve the system of equations 3x-2y=12
x—-4y=14
Solution
3 -2 1 (-4 2
=-10 = M=——
1 -4 -101 -1 3
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e Tl

) 3 =-2V=x 12
System of equations can be represented as =
1 -4\ 14

, 3 =2V (3 —2Y (XY (3 -2Y(12
with solution =
1 -4 {1 -4}y 1 —4) |14
X 12
L.e. =M = x=2andy=-3.
y 14

Example 3

1 a
P(2, -4) — P'(2, -6) under the transformation T with associated matrix M = {b J
a

(i) Find the values of @ and 5.

(ii) Show that under this transformation all points of the plane are mapped on to a
line, stating the equation of this line.
Solution

o (LY 22 2-4a) (2) =2-4a=2 e a=0
1 b oal-4, |—6] |2b-da} (-6 =2b-da=-6 ic b=-3
5
so M =
-3 0
. 1 0OYx % )
(i1) (_3 OJL}J_(—L@X} ie. {x,y) — &, -3x)

and so all points of the plane are mapped on to the line with equation y = -3x.

Example 4

Matrix A represents the reflection of every point P(x, y) in the y-axis and matrix B
represents the rotation of the plane through 90° anti-clockwise about the origin.

(i) Write down the 2 x 2 matrices A and B, and find the matrix products AB and BA.

(if) Indicate on a diagram the positions @ and R of the images of P under the
transformations given by AB and BA respectively.

(iii} Find matrix X such that XAB = B4 and state the transformation represented by X.

Solution v A

1y (=1} (0} (0 “1 0
L O B e o Y e e I

Similarly using the unit square for B

>
-1,0) (1,00 x

o Bl o] o o)
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AB:[—1 0}[0 —1J:(o 1} andBA:[o —1][—1 OJ:(O —1}
0 11 ol (1 0 1 olo 1] -1 0
G)  AB: [0 I}F]:[y J Le. (x, 1) — (, %)

1 Oy X

So that P — @ represents reflection in y = x

BA: [ 0 “IJ(XJ :[—y} ie () = (-, %)
-1 0Ny —-X

So that P — R represents half turn about O

v 4 Q y=x

0 1 0 -1
{iii) XAB=BA = X =
1 0 -1 0
{0 1Y (o 1
since = ,
1 0 1 0
. : 0 —-1y0 1 -1 0
the equation can be written X = =
-1 0J1 0 0 -1

-1 0
le. X = ( 0 IJ which represents reflection in y = -x.
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EXERCISE ON MATRICES

L.

6 2 3 4
. Verify that UB)" =B 47 whenA:(lo ],B:[ }

9 4
Find the inverse of the matrix (4 ZJ.

Evaluate the following determinants:

1 2 3 13 8 12
(@ 2 4 0 (b) 10 6 9
-1 3 1 12 7 10
1 -1 0
Let A=|-1 0 -—1}.
-1 1 0

Write down the matrix A - AJ, where A € R, and / is the 3 x 3 identity matrix. Find
the values of A for which the determinant of 4 - AJ 18 zero.

4 1 2

2 1 1 0
IfB= : ZJ, prove that B* = 4B — 3] where ] = (0 1} and then express B in

terms of B and /.

1 3 3
Using elementary row operations, find the inverse of the matrix A={4 13 12
2 7 5

cos@ —sind L ,
AO) =] where 0 is in radian measure. Prove that
sin@  cosf

[4(0)]” = 4(26) and then find the geometrical transformation corresponding to

2
2
O is the origin and 4, B and C are the points (1, 0), (1, 1) and (0, 1) respectively.
{a) Calculate the co-ordinates of the images of O, 4, B and C under the

) ) .. (21
transformation 7" whose associated matrix is . 2].

(b) Prove that the image of O4ABC under T is a square.
(c) Write 7" as the composition of two of the following transformations:

u
FE : translation [ }; F i reflection in the line x = a;
v

G : clockwise rotation of 0° about Q; H : dilatation [Q, £]
and find the unknowns in each one.
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Answers

1 =2
P

2. 2.(a) 30 ()1

1-» -1 0
3.0 -1 —hn —1lidetA=2*(1-2) =>1=0,1
-1 1 -»

5. =13B-121

19 -6 3
6. AM=-4 1 0
-2 1 -1

7. Half turn about O

8. (a) (0,0); (2,-1); (3, 1); (1, 2) (¢c) GoH or HoG where 0=26.6° k=15
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Justification of the procedure for finding the inverse of a 3 X 3 matrix

Consider the following products of matrices

200 a b c 2a 2b 2¢
ay (010 de f|= e f
001 Jlgai h i

by (010 f
001 I i

d
101Y({2a 2b 2¢ [2a+g 2b+h 2c+i

1013200 V/fabc 101)(2a 2b 2¢ 2a+g 2b6+h 2c+i
¢) 1010[|010 ||de fi=(010]||d e [fl=| d e f
001J]1001 Jighi 001lig h i g h i

These products illustrate that

{a) the row operation “double the first row” is equivalent to pre-multiplying a matrix
by some matrix, R,, say.

{b) the row operation “add the third row to the first row” is equivalent to pre-
multiplying a matrix by some matrix, Ry, say.

{c) the result of “double the first row” followed by “add the third row to the first row”
is equivalent to pre-multiplying a matrix by the matrix RyR..

The above is true for all row operations and for any number of successive operations.

Hence,

i) carrying out a succession of row operations on the matrix A to obtain the matrix I
is equivalent to pre-multiplying the matrix A by some matrix X.

ii) carrying out the same succession of row operations on the matrix I is equivalent to
pre-multiplying the matrix I by the same matrix X.

In the above process the augmented matrix (A | I) was transformed into the
augmented matrix (I | B) by a succession of row operations. In other words, the
matrix I was transformed into a matrix B by the same succession of row operations
that transformed matrix A into the matrix I.

In so doing we ‘“found’ a matrix X such that
XA =1 - (1)
and XI=B - (2)

Statement (1) indicates that A =
Statement (2) indicates that X = B
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Finding 4" using the adjugate (adjoint}) method

Al= adjA , where adj4 denotes the adjugate of A and equals [4,]’, the

det A
transpose of the matrix of cofactors.

}0 z( |1 2‘ ’1 0\
31 2 1 23 6 3 3
1 4 |2 4 2 1
fA,] = | - - =11 -6 —4
31 21 2 3 > 0
1 4 2 4 21 -
0 2 12 110
-6 11 2
02l 1t 2 1o
=adiA=[A;=] 3 -6 0 |anddetd=2 _‘ +4 ‘:3
31 2 1] |2 3
3 —-4 -1
-2 1% %
:A'I:dlAach: 1 -2 0
et
1 =% -X
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RESOURCES
Matrix Algebra

Understanding Pure Mathematics Sadler & Thorning
Section 6 (for basic concepts and transformations)
Section 17 (for determinants and inverses of 3 x 3 matrices)

Modern Mathematics for Schools Book 9 (2™ edition) (for transformations)

Algebra and Number Systems (Hunter)
Chapter 8

Muathematics in Action 68
Chapter 10
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FURTHER SEQUENCES AND SERIES

CONTENT

know the term power series

understand and use the MacLaurin series : f(x) = Zx—' 7(0)
r!

r={

find the MacLaurin series of simple functions: €%, sin x, cos x, tan x, (1 +x)%,
In{1 + x), knowing their range of validity

. . . . . 2x
find the MacLaurin expansions for simple composites, such as e

use the MacLaurin series expansion to find power sertes for simple functions to a
stated number of terms

Comments

This content was in CSYS Paper 2 (unrevised).
Teaching Notes

Graphics software provides a powerful illustration of the concept of convergence. The
difficulties of ditferentiating or integrating power series term by term should be
stressed, pointing out that these processes are only valid within the interval of
convergence.

There is ample scope to link the work on power series with other parts of the course,
e.g. binomial theorem, differentiation, integration and summation of infinite series.

Power series

In Mathematics 2(AH) we expanded I as the geometric series
-7

l+r+r+7 +7%+ provided | r| < 1

This was extended to expressing in the form

X+

]—2X+4X2-8X3+...[X1<%

1 —2x+4x? - 8x* + ... is an example of a power series and the above is an example of

expressing a function namely, flx) = , as a power series provided, in this case,

2x+1

r ... . 1 .
that |x | < > which is known as the range of validity of the expansion.

In this section we are concerned with finding the power series of functions given that
such expansions exist.
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THE MACLAURIN SERIES

Suppose that f(x) is a function which, throughout a certain interval including x = 0,
a) s differentiable any number of times
b) is the sum of a convergent power series

Let this series be f(x) =a, +a,x +a,x° +a,x° +a,x* +.oeene

Differentiating term by term successively we obtain

fx)=a,+ax+a,x’ +ax’ +ax’ +o. s f0) =aq,
Fxy=a,+2a,x" +3ax’ +4ax’ +.oen. ~ f(0) =aq,
[Mx) =2a, +6a.x' +12a,%° +.orvererrn s f0) = 2a,
FUx)=6a,+24a,x +.nn. o f70) = 2.3a,
F(0) = 241, + e o f7(0) = 2.3.4a,
4 " (r)
so that a, = f(0), a, = f(0), a, :f (0),(13 _/ (0), ar:f ©
2! 3! &l
" " (r}
Hence f(x)=f(0)+f’(0)x+f2(ro)x2+f3$0) x* +f—’x’" ............
! ! r!

This is known as Macl.aurin’s series (after the Scots mathematician Colin MacLaurin,
1698-1746)

This result can be applied to some simple functions

The MacLaurin series for e

Let f(x) = ¢*, then
f0)=0
i =et o f1(0) =1
frx)y=e* . f10)=1
Frx)=e o f7(0) =1

. )C2 3 4 xr
et =1l+x+—+—+—+...+ T
20 3 4 r!
. : 1 1 1
Puttingx=1weobtain e=1+1+ -+ -+ —+......
20 3 4

which allows us to calculate e as accurately as we wish.

o . _— 1Y
Note This expansion was obtained in Mathematics 2(AH) as the limit of [1 + —J as
I

n —°° as an extension of the binomial expansion.
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Power series as an approximation to a function

A useful iltustration of how the power series approximates to the function can be
obtained by comparing the graph of f(x) = ¢" successively with the graphs of :
x-—->1+x

x2
x%1+x+—2——

)CZ 3
X =>1l+x+—+—
2 6

2 3 4
X

X
x> l+x+ "+ e
2 6 24

This approach can also be used to determine the likely range of validity.

In the case of e* thisis Vx e R

Similarly

3 5
{a) sinx=x —% +% . which can be showntobevalidVx e R

; x;
(b) COS X =1-*2'~+Z* ........ which can be shown to be valid Vx € R

.x3 - x5 7
(c) tan' x=x— ? + ? —7 +...which can be shown to be valid for-1 <x £ 1

-1 1o -2 )
(d) (I+x)* =1l4+ox+ ala-1) X2+ alo ;'(a ) P . which can be shown to
be valid for -1 <x <1 '
2 3 4

(e) Inl+x) = x—?+%—%+ ....... which can be shown to be valid for -1<x <1

Range of validity of a MacLaurin expansion
Students are expected to know the range of validity of these power series. As
indicated above in the case of f{x) = €', graphic calculators provide a powerful means
of illustrating the likely range of validity of the McLaurin expansion of a function f{x)
by comparing the graph of f{x} successively with the graphs of:

x— fO)+ f(0)x

x— O+ (0)x+

x + /70 K+ SO X’
2! 3

1O
N

x— fO)+ 70
efc.
Proving that these series do converge for a particular range of values of x is outwith

the scope of this Unit. A more detailed justification is provided at the end of this
section,
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MACILAURIN EXPANSIONS FOR SIMPLE COMPOSITES

Given the MacLaurin expansion of a function we can find the expansions for simple
composite functions as follows.

2 3 4
{a) Given that e° "—*1+x+5+§+%+ ........... find an expansion for e™
20 (2% (2x0)°
It follows that e :1+2x+( x) +( *) +( *) T Yxe R
2! 3! A
2 . 4xt 2x°
ie e =1+2x+2x +T+ 3 Forrenens Vxe R
-1 e —2 .
(b) Given that 1+x)° :1+ax+a(C;’ )x2+oc(a )3(’& )x3+ ...... for —1< x<1 find

an expansion for (2 —x)”' stating the range of validity of the series.

alo—1) e ala—)(a—-2) E

1+x)"=1+ax+ 3 +......
= (1-0'=l4+x+x54++ ... d<x<1
1 1 1
Now 2-x7" = —(1-1x"

2_x 2(1—1x) 2
Now apply the above result to get

-h._l__ _1_ l 2 l 3
(2—x)" = 2{1+2x+(2x) +(2x) +J

1 1 1 , 1
= | I+ x4+ Sx"+opx
2 2 2 2

1
with range of validity: -1 < Ex <1 ie —2<x<2

i) Lest students get the impression that we can find a power series expansion for
all functions attention could be drawn to the functions Inx and | x |. In x is not
defined for x = 0 and although | 0 | exists | x | is not differentiable at x = Q.

ii.) Power series provide a means of evaluating particular values of functions — cf
calculators

iii.)  Within this Unit we are concerned solely with MacLaurin expansions of
functions defined on R, the set of real numbers. Interesting results arise when
we extend this to complex functions. One such result, is at the end of this
section on MacLaurin Series.
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WORKED EXAMPLES

Example 1
Given the MacLaurin expansions of ¢” and sinx find expansions, as far as the term in
£, of (a) esinx and (b)) &'

Solution
JCE 3
et =l+x+—+—+.... Vxe R
20 3
3 5 7
sinx=x——+x X YxeR
357
2 3 3 5 7
(a) e"sinx :(1+x+x—+£~+ ...... )(x~—+x——x—+....)
213 357
3 5 7 3 5 7
S S S W 70 it . S
335 7 3 o5 7
x° r© X x x* X X
T I S T )
2! 3 5 7 3! 357
, oxt X Xt i s
=x+x" ——+——-—+-—+termsinx
203 3 3
2 X’ .5
= X+x +~3—+....termsmx
: pA : 3 . 4
(b) e =1+sinx + (sin x) +(smx) +(Smx)
2! 3 4!
1 x° 1
=l 4x- == L) L)
2 3 6
3 4
:1+Jc—ﬁ+1(2—‘2x)+—1—Jc3+~1—x4
6 6 2
:1+x+ﬁxzﬁlx4+ix4+
6 2
:1+x+w-x2-é—x4+
Example 2
-] -Ha—2
Given that (1+x)°‘:1+a.x+a(a )x2+a(a (o )x3+ ...... for —1< x<1

! 3!
find the first three terms of the series for (1 + 3x)'” and (1 - 3x) ', Hence show that,
if x is so small that x* and higher powers of x can be neglected, the function

1+3x}"
1-3x
Solution

can be expressed as 1 + 2x + 2x°.

LA -1}(3x)°
(14—3){)”3=1+%(3}6)4————3(3 2)1( *) +

=l4+x—x+...
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1 1
Note: both series valid for ——<x < —.

1+ 33"
1-3x

11

(1+30)7? 130"
= (Q+x—22+. )1 +x+2+..)

2

442 XA 22— =

=1+420+2¢° (ignoring x* and higher powers)

Example 3

Use MacLaurin’s Theorem to find a power series for tan x as far as the term in X%,
Solution

flx) =tanx S =0
f'{x) =sec’ x f0y=1
f"(x) = 2secx.secx.tanx = 2sec’ x.tanx =0

f"(x) = 4sec x.secx.tan x.tan x + 2sec” x.sec’ x
=4sec’ x.tan’ x + 2sec’ x Fry=2

Thus, since

Fl) =0y + F0)x + f"Z(’O) xF+ f’;EO) X

tanx=0+1x+0+ %Jf +... =x+ %x3+

Note: This example links with Mathematics 1 (AH) - * find the derivatives of tan x
and sec x’.
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Example 4
(a} What is the domain of validity of the series (1 +x9) " =1 —x"+x* ~x®* +x° - .,

(b} Using this series find the power series for tan 'x

(¢} Using these results find the sum of each of the following infinite series:

1 1 1 1
D 1+ — .

4 4* 4 4
(i1} l—l+l—l+l—...

3 5 7 9

1 1 1
(1) 1~ + - + —
T3N3 3 x5 37 3% %9
Solution

(a) -1 <x*<1

(b) Since | (1 +x°) 'dx = tan'x

tan'x = Jl B I

.X,'3 X5 )C7
—x— 4+ -7
3 5 7
(¢}
(i), putx =% in (1 +x9!
1 1 1 1 1 4
So lomt— = (14 ) =2
4 4> 4 4 5

(i), putx=1 intan'x

So 1—l+l—l+l—...=tan'11= i
35 79 4
1 1 1
(iin), 1— + - + —...
33 3*x5 3*x7 3“%9
s 1 1 1 1 1 1 1
=3t =
3537345 5% 734
1 T
= J3tan' —==43=
NE) 6
Note

1. This question links with Jl——l—gdx in Mathematics 2 (AH).
+x

2. This question requires the application of knowledge in a more complex context
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EXERCISE ON FURTHER SEQUENCES AND SERIES

1. Find the first four non-zero terms in the power series for e*cosx.

)—11’2

2. (a) Write down the binomial series for (1 +x as far as the term in x°.

1
Jl=x?)

non-zero terms of the power series for sin” x.

(b) Deduce the power series for and by integrating find the first three

(c) Write down the series expansion for In(1 + x) and hence that for In(1 + sin x)
as far as the term x*,

3. Use the binomial theorem to evaluate V101 to five significant figures.

4. State the power series for In(1 + x) and deduce that :

1+x o ox7 &
In =2 x+—+—+—+...
1-x 3 5 7

By choosing a suitable value for x, evaluate In 3 to 2 significant figures.

Why could you not use the original series for In(1 + x) to evaluate In 3 ?

5. Using MacLaurin’s Theorem to find the relevant power series, evaluate

lim\/(l—X) ~ (1= x%)

x—30 X
Answers
1 1+Jc-—)c3#lx4
5
3
2 (a)l—lx+§xz—é-x3+ B 1+ —x?+2x* x4+ + 7 x5+
2 8 16 o
2 3 4
©x- 2+ X 4 P PR
2 3 4 2 2 2
3. 10.050
2 xB 4
4 x-—+——-"— ; putx=1 togive 1.1 (2s.1)
2 3 4 P 8
5. .1
2
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Range of Validity of a MacLaurin Series — Further Justification

If wq, up, 3, gy ..., is a sequence of positive terms then the sequence of partial sums
S1=uy,Sa=ur + Uz, S3=uy +uy + Uz, Sa=uy + 1y +usz + us, ....converges if the limit

of Yol asp seoiskand k<1. Tt diverges if k> 1
7

n
Clearly, if uy, uz, 43, 4, ..., is a sequence of alternatively positive and negative
terms then the sequence of partial sums Sy = w1, Sy =u; + uz, S3=uy +up + uz, S4=u;

unH

iU

n

diverges if £ > 1. Because the terms are alternatively positive and negative it may
converge if £ = 1.

+uy + U3+ Uy, ....converges if the limit of asn >0 isk wherek<1. It

For example,

range of validity of the expansion for e*

x" (n=1)!
=— and so
u nl X"t

n

u?1+l

Here

U .
—1tli a5 p —5 o0 s

i

n

n

limit of

X . .
Now ——0asn — e .. expansion is valid for all real x
n

range of validity of the expansion for sin x

2841 1) 2
Here “nst— =~ (an 11)' == : Limit of || asn > oo is 0
w, (2n+D! x™ (2n+1)2n u,
.. expansion is valid for all real x
range of validity of the expansion for log(1 + x)
n+l ”’1 1 ] ' ‘ )
Here Yot =7 n . ) =-x{l-—). Limit of |2zt asn —» oo is | x|
u, n o x n u,

. expansion is certainly valid for -1 <x <1

However in this case the actual range of validity is -1 <x <1
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Extending work on MacLaurin Series to complex numbers

Although this is not an explicit part of the content it links the work in complex
numbers in Mathematics 2(AH) to work in this unit on further differential equations.

2 3 4 r
X

e* :1+x+x—+—+—+....+—+ ........ VxeR
213 o4 !

Suppose we can extend this to complex numbers i.e.

. o 3,4 e
e =l+z4+—+—+—+. . t—+

203 4 r!

Let us consider a particular complex number /0.

ot 2 'y 3 oy 4 N
Then ¢® =140+ 0, GO7 @7 )

. F v
2! 3 4 rl
et 2 Lmy 3 Ay 4 Halts
= e =1+i0+ 4o) + @6) + () N ) Foreiane
2! 3! 4! rl
2 3 4 5 6
— eiO :1+i6_6__1'8_+e_+i—8——8— ...........
20 3 4 5 4l
2 4 6 3 5
- e|9=(1__+___+)+l(e—8—+e—— ..... )
20 4 6 35
= e’ =cosf+isin0

It follows that e *° = cos(—8) +isin(—0) = cosO—isinH

and so cosf = ; (e +e™) and sinB= % (e® —e ™)

Note If we replace 8 by min e® =cosB+7sin® we obtain
e™ =cosm +isinmt =—-1

Hence, e™ +1=0which unites in a single relationship the five most important
numbers in mathematics, namely, 0, 1, e, 7, and
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CONTENT

use iterative schemes of the form x, . 1 = gl,), n =0, 1, 2, .... to solve equations
where x = g{x) is a rearrangement of the original equation

use graphical techniques to locate approximate solution xo

know the condition for convergence of the sequence {x,} given by x, 1= g(x,),
n=10,1, 2, .... and the meaning of the terms first and second order of convergence

Comments

Students should be made aware that the equation f{x} = 0 can be rearranged in a
variety of ways and that some of these may yield suitable iterative schemes while
others may not.
eg. flx) =xe"—1=0 = x¢"=1 = x=¢" togive the scheme

Xy41=e " withxy= 0.5

Cobweb and staircase diagrams help to demonstrate the test for convergence for
finding a fixed point &t (& = g(@)) in a neighbourhood of ¢, namely Lg’(x)l <1.

P

4l

1 c o .
eg X, = E{x" + —} for estimating Ve is a second order method.

ITERATION

Iteration is the successive repetition of a mathematical process using the result of one
stage as the input for the next.

When a non-linear equation f{x) = 0 can be rearranged in the form x = g(x) it may be
possible to solve the equation by the iterative formulax, 1 =glx,),n=0,1, 2, ...

If the sequence defined by x, + 1 = g{x,}, does converge to a fixed point then \g’(x)‘ <1
in the neighbourhood of this fixed point.

Proof — Suppose a is a root of the equation x = g{x) so that g{a) = a.

glx) —gla)
X—a

As x — a, the value of the expression -» g'la) (c.f. first principles

differentiation).

If x, is a value of x close to a, it follows that g(x,) —gla) = (x, —a) g'(a)

Since glx,) = x,,1 and gla) = a, this gives X, —a = (v, —a) g'(a)

Now, if g'(a) > 0, x, and x,+; will both be greater than a or both less than a (and if
g'(a) <0, a will lie between x, and x,,41).

Also, since [x,.; —a| = |6, —a)| | g'{@) |, w1 —a] will be less than |(x, — a)]| if
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|g'(a}] <1, ie. when |g'{a)| <1, x,.; will be closer to a than x,, and the
sequence of approximations to the root will converge.

In practice, | g '(a) | needs to be considerably less than 1 for convergence to be rapid.

This test for convergence can be demonstrated using staircase and cobweb diagrams.

() Staircase (convergence from one side of the root, 0 < g'(a) < 1)
A
¥
y=x
y=gk)
x=aqa
—_— ]
>
X3 X2 X1 Xy
X
(ii) Cobweb {convergence from alternate sides of the root, -1 < £ ’(a) < 0)
A
y=g) d y=x
=0
—_

>
Students could draw diagrami where g’Jga) >1or g'la) < -lxto illustrate divergence.
0 2 I

To illustrate the usefulness of the test for convergence, consider the equation:
3
X +2x-6=0

A sketch of y = x” against y = 6 — 2x reveals a positive root between 1 and 2.
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y=6-2x

The following rearrangements are possible:

1
@ x=(6-20" )  x=_("-6) © x=
Apply the test in the neighbourhood of the root, say x = 1.5

@ g =(6-20" = ') :-é(smz)c)‘%
g'1.5)=-03 = |g'l.5) <1

(b) g(x)zé(x3#6) = g'()c):gx2 = g'1.5) =34 = [g'1.5]|>1

©ew=2 2 o gw=-2242 o sU15=27 =205 >1

°x o Xt
Only rearrangement (a) will give convergence to the root.

(a) Iterative formula is x,4 = (6 — an)m, x=1.5

x1=1.4422 xg = 1.4562

X3 = 1.4605 x7=1.4562

x3 = 1.4548

x4 = 1.4566 i.e. the root (or fixed point) is 1.456 (3 d.p.)
x5 = 1.4560

This example illustrates the various stages of using simple iteration viz.

1. Use a graphical method to locate an approximate solution (or initial value), xo

2. Rearrange the original equation in the form x = g(x)
3. Apply the test for convergence.
4

. Perform the iteration using x,.; = g{x,)
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FIRST AND SECOND ORDER CONVERGENCE

For simple iteration, convergence occurs when | g'(a) | < 1 — see previous section —
and the rate of convergence will increase as | g’'(a) | decreases.

It can be shown that successive errors in the sequence of approximations are
connected by e, =e, g (@) provided g'{a) # 0, (where ¢, =x, - a, the error in the
nth iterate). In this case the process is said to be first order.

However, if g'(a)=0then e, = ;en £ (a) provided g"(a) # 0 and this process is

called second order.

As a general rule, second order processes involve more complicated iterative formulae
but converge more quickly.

The example given in the content section of the Arrangements document for this topic

X

n

1
s X, = E{x" + i} {(which is the formula for finding Ve using Newton-Raphson

method)

Here glx) = %(ercx") = g'(x) :%(l—cx_z) , therefore g'(c) =%(1—£) =0
c

i.e. the process is second order,

WORKED EXAMPLES

Example 1

Solve the equation " —x*-2=0, giving your answer to 2 d.p.
Solution

(i) Sketch to find approximate root.

Ay
Root lies between 1 and 2.

_ 2
yEx2 Take xo = 1.5

(ii) Rearrangement: ¢ =x>+2 = x=Inkx*+2)
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(i) Test:  g() =In(x* +2)
2x
"x) = = g'(1.5) =0.7, ie. 1.5 <1
g S g | & |

so convergence will take place (slowly because of high value of |g"(x) |)

(iv) Tteration: X,.; = In(®+2), xp=1.5

X1 = 1.435 X6 = 1.339 X111 = 1.323
x> =1.401 x7=1.333 x12=1.322
JC3:1.377 x8:1.329 X13=1.321
X4 = 1.360 Xog = 1.326 X14 = 1.320
X5 = 1.348 X10—= 1.324 X15 = 1.320
i.e. rootis 1.32 (2 d.p.)
Example 2

{a) Find the order of convergence of the following iterative processes:

1
(1) Xni1 = %—xi’, for a root of the equation x* +x -5 =0, taking xo € [0, V4]

1 1
(i1) Xpr1 = —x(3 = 5x°) for finding —.
1 +1 5 g \/g
(b} In (i), find i correct o 4 d.p.

J5

Solution

3

(@ ) g(X)=;-x S o) =3

Clearly | g'(x}| < 1 for a value of x in the interval [0, 4] and so convergence takes

place. Also, if A represents the root g'(1) # 0 since 0 < i < V2.
Hence the process is first order.

1 3 5 3 15
ii = x(3=5xN ="yt = M) =2 22472
(i} g ) x( x°) Zx 2x g (x) > X

o .1 (1
We know in this case that the root is —. So g (—} = (). Clearly, convergence

V5 V5

. (1 :
takes place and since g [—J =0, the process is second order.

NG

1
(b) Take x=0.5 x =X 0.5(3-5x%0.5%) = 0.4375
xz = 0.44690 x3 = 044721
x,=0.44721 and so the root is 0.4472 to 4 d.p.

The quick convergence is a feature of second order processes.
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EXERCISE ON SIMPLE ITERATION

1. Prove that the equation x* — 2x — 1 = 0 has only one root in the interval 1 < x < 3. Verify that the

equation can be rewritten as x = (2x +1) %
L

By using the iterative scheme X, | = (an +1) % with xy = 2, obtain an approximation to the root
correct 1o two decimal places.

2, By using a suitable rearrangement of the equation £ —6x’ +11x—8 = 0, obtain an approximation
to the root correct to three decimal places using an appropriate iterative scheme.
You should draw a graph to help find a suitable starting value of the root and apply the test for
convergence to ensure that your iterative process will converge.

3. Show that the iterative process x,.; = 1 - sinx, withxy e (0, 1), for a root of the equation
sinx +x—1=0, is first order.

4. By drawing an appropriate sketch, show that the equation e* — 4sinx = 0
has two roots betweenx =0 and x = 1.5.
Using a suitable rearrangement of the equation and a simple iterative method, find the smaller of
these two roots correct to two decimal places.

Answers

1. 1.62

2. 3.521

4. 0.37
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RESOURCES
Further Sequences and Series

MacLaurin Expansions
Calculus (Hunter)
Chapter 7, p.192 onwards gives a thorough treatment

{more than is required for this paper)

Core Maths for A-level (Bostock & Chandler)
Chapter 36

Iterative schemes

Numerical Mathematics (Elizabeth West)
Chapter 2

Numerical Analysis (C.Dixon)

Note that Elizabeth West’s book has been rewritten and has forms the basis of the
Support Materials for Numerical Analysis 1 (AH), issued to all centres by HSDU.
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FURTHER ORDINARY DIFFERENTIAL EQUATIONS

CONTENT

solve first order linear differential equations using the integrating factor method

find general solutions and solve initial value problems

Comments

This content was contained in CSYS Paper 2 (unrevised).
Teaching Notes

Linear differential equations are differential equations in which y and its derivatives
occur only in linear combination even though their coefficients may be functions of x.
The general form of a first order linear differential equation is

d
a(x)l+b(x)y = g(x)
dx
First order linear differential equations occur in
. . : . . . .odv
a) motion subject to gravity and air-resistance, resulting in —+cv =g
)

b) asimple electrical circuit consisting of a resistance R and an inductance L,
connected in series, with a constant electromotive force V which gives rise to

the differential equation L? +RI =V
t

SOLVING FIRST ORDER LINEAR DIFFERENTIAL EQUATIONS

Consider the linear differential equation x° % +3x%y =2x

d
Now & (xBy)z x* Z); +3x”y and so our equation can be written as — (rSy): 2x

dx
which has solution x’y =x*+c¢
. s dy 2 . 1 ¢
Thus the general solution of x £+ xy=21is y=—+— {x #0)
X x

The above is an example of an exact equation i.e. an equation whose left-hand side 1s
an exact derivative.

If the original equation had been written in the equivalent form x* i +3xy=21it
would not have been exact since the LHS is not an exact derivative. However

multiplying throughout by x gives x* %+ 3x’y = 2x which as we have seen is exact.

The question now arises — can we always find an expression to multiply throughout
by in order to make a first order linear differential equation exact?

The general linear equation a(x) gx)i +b{x)y = g{x) is usually first written in the
form Zl + P(x)y = f(x) which is known as the standard form. It is unlikely that this
%

will be exact,
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Suppose we multiply throughout by a function R of x to obtain

RY 4 RP()y =RF (x).
dx
We now try to choose R so that this equation is exact.

The existence of the term R@— on the LHS of the above suggests the LHS of

dx

the exact equation will be % (Ry)

Thus we choose R so that % Ry)= R%—V— +RP(x)y
X

d dy dR dy dR dy
— Ry =R=+"—y s0 R=+-——y = R=+RP(x)
dx Y dx dxy dx a’xy dx Y

Hence we choose R so that% =P(x)R.*
dR _ 1 _ _ _ JP(x)dx
Now ?E_P(X)R = J'Ea’R = IP(x)dx = InR = IP(x)dx = R=e

- eJP(.r)dx

R= and is called the integrating factor

* ‘variables separable’ differential equation encountered in Mathematics 2(AH).

d
In summary, to solve the equation a({x) d_y +b(x)y = g(x)
x

1. express it in standard form i.e. in the form % +Plx)y = fix)

Plaldx
2. evaluate ej

3. multiply throughout by ef "% 10 obtain

eJP(x)dx gz_i_elp(x)dxp(x)y :eJP(x)dxf )
X

4. write this in the equivalent form di[ejpmdxy] = eIP(xmf (x)
X

5. solve ejp(x}dxy

_ JeIP(x)dxf(x) dx

WORKED EXAMPLES

Example 1

d
Solve the equation xa’v =x+y
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Solution

Step 1: Expressing the equation in standard form we get iml y=1
X
: : J;ldx —In 1 1
Step 2: Integrating factoris e’ *  =¢ " = ——=—
e
Step 3: Muitiplying throughout by * 1 we obtain 1dy —iz y= 1
X xdx x X
1dy 1 1 d{y 1
Ste 4: — Y= — | e | =—
P xdx x° Y X dx (xj x
1 1
Step 5: i{}—)):— = Z=.|-—abc = Y —lnxte
del x X X X X

Hence general solution is y = x(lnx +c¢)

Example 2
d :
Solve the differential equation Zxay— 3y =x°—x, given that y =4 whenx = 1
Solution
. e . . dy 3 x 1
Step 1: Expressing the equation in ‘standard form’ gives ——-—y=———
dx  2x 2 2
J-idt —élnx —i
Step 2: Integrating factor=¢” > =e¢ * =x*
3 3 5 3
5. —dy 3 - -=
Step 3: Multiplying throughout by x * gives x * Y2y Zy=x? (f_l)
dx 2 2 2
3 5 3
Sdy 3 = ox 1
Step 4: 2 Ty ly=x2(Z-2)
P a2 0T 22
; 1 1 1
ot i(yx%)-x‘/z X2 =— 2——;(/2
dx 2 2y 2 2
d 5 ) ST G
Ste 5: *ﬁ( x—/z):_x /VZ____X‘A
P a2 T2

3 1 3 1 ) 1 L -1
= yx% :%I(x_A —x_/z)dxzz(ZxA F2x )+ C=xt+xH +C

= y=x"+x+ Cx* (general solution)

Whenx=1,y=4= 4=1+1+C ie C=2
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Thus y:x2+2x% +x

Students should be encouraged to check solutions by substituting back into the
original equation.
Example 3

. . . . . d .
Find the solution of the differential equation tan xay + 2y = sin x cos x for which

""—:Ewhenx—E
7= 16 4

Solution
. . . d
Step 1: Expressing the equation in ‘standard form’ gwesl+ y=cos’x
dx tanx
. J.Z(-:ﬂdx Insin? 2 2
Step 2: Integrating factor = ¢” 9% =" * =gin" x
Step 3: Multiplying throughout by sin® x gives
d .
sinzxi%—(Zsinxcosx)y =sin’ xcos® x
dx
.2 d_y . . 2 2
Step 4: sin xaﬁ—(Zsmxcosx)y:sm xcos” x
d . .
& —(ysin® x) =sin® xcos” x
dx
d . . . .
Step 5: E(ysmzx) =sin’ xcos’x = y sin’x = _l.sm2 xcos” x dx
1.
Jsinzxcoszxdx = J(Esm 2x) % dx
1¢. 5
:—-Jsm' 2x dx
4
11— cosdnar
—g.[ —cosdx
1 1.
=—(x——sindx) +C
8 4
2 1 . 2 2
=y= gxcosec x—gsmélxcosec x+Ccosec’x
Fy= whenx=", L =1%o gs2c="0i2c = C=0
4 16 8 4 16

1 .
Therefore, the particular solution is y = gé—cosec2 x{4x — sin 4x)

Note The complexities of this question including the link with other units would
place it at the A/B level.
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Example 4

dl . .
The differential equation La’_ + RI =V occurs in electrical theory. It arises in a
!

simple electrical circuit consisting of a fixed resistance R and a fixed inductance L,
connected in series, with a constant electromotive force V.
Find 7 as a function of t, given that / = 0 when ¢ = 0. Hence show that as ¢ increases /

|4
approaches the value s

Solution
. o .o d. V
Step I: Expressing the equation in ‘standard form g1vesg+zf :Z
(B R
Step 2: Integrating factor= e’ * =et
& & Bp 2y
Step 3: Multiplying throughout by e gives ¢f —+e¢t —7=el —
dt L L
Ri Re Rt R Ri
Bar %R, By g *) p %
Step 4: et —+el —I=el — —|Jet =—et
dt L L dar L
Rt Rt Re Rt Ri Rt
Step 5: L3 let zKeL = Jet —I—eL =lel =——el +c¢
dt L
3 R
= Jet =—e! +c

14 1% R
Whenr=0,/=0s0 0:K~+~c ie.c=——,hence I =—{1—¢ £)
R R R

7Rr

) V
Astincreases e © - 0andsol— “R_

Example 5
In the previous example if a variable electromotive force Vsinwr is applied then the

di . .
corresponding differential equation is L o +RI =Vsinwt. If I =0whent=0, find

an expression for 7 and find what happens in this case as ¢ increases.
kt

mzw(ksinmf~wcosmr ]

[ You may assume that je“ sinwt dt = —
E-+w

Mathematics Support Materials: Mathematics 3 (AH) 65



Solution

Step 1: Expressing the equation in “standard form’ givescg+R[ = Ksin wi
3
fid( L
Step 2: Integrating factor = e’ L =e’
R i B p X
Step 3: Multiplying throughout by e gives e* E—-i—e L 1—1 =e¢l —sinot
{
Rt Rt Rt Rt Rt
= =R =V . A - .
Step 4: elﬁ%—eL_I:eL—sm(nt{:}—— Iet |=—el sinwt
dt L L dt L
Rt Rr Rt Rr
Step 5: d Iet :Ke Lsinwt = let =j—e Lsinwt dr
dt L L
R X
LS L
=le” —K—f— Esirloot—oocosw.t + 4
LR \L
2,
R
2 Ve[_
= et =———— (RSin(Dt-—(DL cosmt)-{-A
R+ o
- e de
=1 =————Rsinw¢ —wlcoswi 4+ de *
R+ [’
LV
whent=0,/=0s00=——+-— (—wL)+A hence A4 =%
R +Lw R +Lw
14 2
Thus J/ =———— Rsinwf —wLcosw! +wle *
R +Lw
ast— oo I—»%(Rsincor—(mlcoswt)
R°+Lw

Note The example above has been included should teachers/lecturers wish to

further emphasise the relevance of this topic and allow comparisons to be

made with the previous example. It is clearly beyond level A/B with
regard to assessment.
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CONTENT

know the meaning of the terms: second order linear differential equation with
constant coefficients, homogeneous, non-homogeneous, auxiliary equation,
complementary function and particular integral

solve second order homogeneous ordinary differential equations with constant
coefficients

2
dj;+bdl
dx

a

+cy =0

find the general solution in the three cases where the roots of the auxiliary equation:
(i) are real and distinct

(ii)  coincide (are equal) A/B

(iii)  are complex conjugates A/B

solve initial value problems

Comments

Examples of contexts could include the motion of a spring, both with and without a
damping term.

This content was contained in CSYS Paper 2 (unrevised).

Teaching Notes
2
A second order linear differential equation involves d }2) , @ and y.
dx
2

A simple example is d “Z =6x

dx

d =

Now );:6x = dl:3x2+c::>y:x3+cx+d

This illustrates that the general solution of a second order differential equation will
contain two arbitrary constants.

. : . d’y . d .
The differential equation « —d—); +b§+ cy = f (x) is the general second order
X
differential equation with constant coefficients.

Before proceeding to solve the general equation we attempt to solve the simpler equation
d? d
a——%+b—‘£+cy:0 (A)
dx dx

which is the general second order homogeneous ordinary differential equation
with constant coefficients.

It can easily be confirmed that if y = u and y = v are any two particular solutions of
(A) then y = Au + By, where A and B are arbitrary constants, is also a solution of (A).
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Since A and B are arbitrary constants and provided that # and v are independent
solutions (that is, one is not merely a multiple of the other}, y = Au + Bv is the general

solution of (A).
2

dy_l_bdy

dx*®

Thus, to solve equations of the form a +cy =0 we seek any two

independent solutions.

2

Consider first the relatively simple example: Solve )2) -y=0
d’y d’y
s T 2 =Y
2
To solve —- =y, we seek a function with second derivative is equal to itself,

This is a property of x —¢"
d? y_d (dy) d ot o
de’  dx dx dx

dz
)2]-—)1=0.

Le. if y =e" then

Thus y =e"is a solution of

Another solution is y =e™ smced y_4 (dy) -i(—ef't) =e "=y

dc’  dx dx dx
Now y =e” and y =e " are independent solutions thus the general solution is

y=Ae" + Be ™, where A and B are arbitrary constants.

2

SOLVING THE EQUATION aj S +b3—y+cy =0
X X

The above example suggests that solutions of the form y = €™ should be sought for
this equation.

dz.y 2 _mx
d 1o =me

Hence y =¢™ is a solution if and only if am’e™ + bme”™ + ce™ = 0.

d
If y = ™ then Y e an
dx

am’e™ + bme™ +ce™ =0 < am’ +bm +c =0 (since e™ = 0)

Suppose that the roots of this equation are m, and m; then take y =™

mx

dz d My X LTS
a )Zj-l-bl-l-cyzamlze *t by e™ + ce™ = (am P+ b+ c) e =0,
dx

mx X

Similary, ¥ = ™" is a solution and hence y =4 e™" + Be
constants, is the general sclution.

The quadratic equation am’ + bm + ¢ = 0 is called the auxiliary equation of the

2

)2) +b€)i+cy =0 and there are three possible situations
dx

, where A and B are arbitrary

differential equation a

which we need to explore.

(i) If amm® + bm + ¢ = 0 has real and distinct roots, say, o and 3 then,

e™ and e™ are both solutions of the original differential equation
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Hence,y=4Ae™ +B e™  where A and B are arbitrary constants, is the general
solution of the differential equation.

(ii) Ifam® + bm + ¢ = 0 has equal roots, say «, then [A/B]

e™ is a solution of the original differential equation.
It can be shown that y =xe™ is also a solution.

2

Proof: a —(2—1—2— (xe™) +bi (xe™) +clxe™)
dx dx

2¢e™ + 20e™ ) + bloxe™ + ™) + coe™

=ala
= (a0’ + bou + c)xe™ + (2ac. + b) ™
=0+ (2ac. + b) e™

However, since « is a repeated root, a(m - a) (m - &) = am® + bm + ¢

s 2aam=hbm :>20t=—E = 2aa+b) =0
a

Therefore, y = xe™ is a solution of the differential equation.

Hence, y =4 e™ + B xe™, where A and B are arbitrary constants, is the general
solution of the differential equation.

(iii)  When am’ + bm + ¢ = 0 has non-real roots, [A/B]
i.e. complex conjugates ¢t & i3, with ¢ and [3 real and {3 > 0.

It can be shown that e**cos [3x and e*sin [3x are independent solutions of the
differential equation.

Showing that ¢**¢cos 3x is a solution
2
a

- (e™ cos fix) +bg; {e™ cos fix) +c(e™ cosfir)

= al(o® - Be™ cos fix - 2af €™ sin fx] + blee™ cos fix - 3 € sin fx]
+ce™ cos fx

= [alo” - B*) + ba + c] e™ cos fix — (2ace + b)Y e™ sin fix
Since o + i3 is a root of am® + bm +¢ = 0, alo + i)+ bla+iB) +c =0
e ale” - P +bo+c+iac+ b =0
ie.alo® - ) +ba+c=0 and 2200+ b =0
Therefore, [a(a” - B%) + ba + c] €™ cos fix — (2ac + b)Y ™ sin fx = 0

Le. e™cos [Ax is a solution of the differential equation.

Similarly, e*'sin fix is also a solution.
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Hence y =4 e*cos (3 + B ¢™'sin f3x, where A and B are arbitrary constants, is
the general solution of the differential equation.

Curious readers will find a further explanation of this at the end of this section.

WORKED EXAMPLES

Example 1

Find the general solutiens of the following differential equations:
d*y _dy d’y  dy d*y _dy

(a) +5==—-6y=0 (b) ~4-= 44y =0 (0 +2=+5y=0
& de - at a7 a7

Solution
(a) Auxiliary equation is m* +5m —6=0
mr+5m—6=0= m+6)(m-1)=0,ie.m=-6orl

General solution is y = de™ + Be*

(b)  Auxiliary equation is m” - 4m + 4= 0
m -dm+4=0 = (m-2"=0, e.m=2

. . 2
General solution is y = de™ + Bxe™

(¢)  Auxiliary equationis m’> +2m +5=0 = m=-1+2i
me2m+5=0 > m=-112

General solution is y = ¢ (4 cos 2x + Bsin 2x)

Example 2
When a body, suspended from a light spring hanging vertically, is displaced vertically
from its equilibrium position and released its displacement from its equilibrium

2
position after time ¢ satisfies the differential equation 6; f + 21? +98x =0.
t 4
Hence find a formula for x in terms of ¢.
Solution
Auxiliary equation is m” + 21m + 98 = 0
M+ 2Im+98=0=>m+7Nm+14 =0=>m=-7or-14
General solution isx = de™" + Be™'*
Example 3

When a body, suspended from a light spring hanging vertically, is displaced vertically

from its equilibrium position and released its displacement from its equilibrium

dix

dr*

position after time ¢ satisfies the differential equation +98x=0.

Hence find a formula for x in terms of ¢.
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Solution
Auxiliary equation is m° + 98 = 0
m+98=0=>m=1 @z’ =+ 72
General solution is x = 4 cos 7+/2¢ + Bsin 74/2¢

Note For information.
Comparing the solutions to examples 2 and 3 above we see that, in the case of
example 2, x — 0 as r — °° whereas in example 3, x is a periodic function of ¢
with constant amplitude. Example 2 illustrates motion of a spring with a
damping term and example 3 illustrates motion of a spring without a damping
term.
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CONTENT

solve second order non-homogeneous ordinary differential equations with constant coefficients:

dx* dx
using the auxiliary equation and particular integral method [A/B]

2
ad y+b5y+cy=f(x)

Comments

2
%—4dl+13y =0 withy =-1 and & =2 whenux = 0 is an example of an initial
dx dx dx

value problem.

This content was contained in CSYS Paper 2 (unrevised).
Teaching notes

Second-order linear differential equations occur ir

c) undamped motion of a weight attached to a spring, m 7 Y = —ky
¢

d) forced resonant systems modelled by the equation
s

d’y
dr?

+w’y = Bw’sinwt

d’y  dy
a——+b—=—+cy= fix)
dx dx y=/

2

It is reasonable to suppose that the general solution of the equation
2

d”y

a—

+bdl+cy = f(x)
dx

is linked to the general solution of the equation

2
d
ad—)z}+b——)—}—+cy=0
dx dx
in some way.
v o . dy . dy
Suppose that y; =4 e™ + Be™ is the general solution of aF+bd—+cy =0
X X
Consider y; =y, + u«, where u is a function of x then
d?y dy d*(y,+u)  d(y +u)
a iyp=tqcy, =a L +p— +c(y, +u)
a0 i’ d
2 2
=ad);‘+ad%+b@+b@—+cyl+cu
ax dx dx X
d’ ‘v d
=a );I+b@+cyl+a L:+b—u+cu
dx dx dx
2 2
d d d
H—"adz+b—u+cu [since a J;'+f’93}~1+13),*1=()]
dx dx dx

. : d’
Hence y; = y; + u is a general solution provided a 4 L: +bi’i+cu = f(x)
X X
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. . . . d’y  dy
i.e. provided u is a solution of a +H="+¢cy = f(x)
p N oY f

2

2
TO FIND THE GENERAL SOLUTION OF 4 %—}2’ + bjy +ey=fx)
x X
The above suggests the following approach:
1. Find the general solution of the corresponding homogeneous differential
2

equationa %’—:— +b % +cy =0. {called the complementary function (CF)}

2

d ‘5 +b%+cy = f{x) {called a particular integral (PI)}

2. Find a solution of a

3. The general solution of the original equation is the sum of the complementary
function and the particular integral.

2

d d
Finding a Particular Integral of dxy +b Ey +ey = flx)

2

The form of f{x) needs to be considered before the PI can be found.

To find the PI the following table which lists the most important forms for f(x} and the
corresponding expressions to be tried as PlIs is very useful.

S&) Form for P1
k" + anax T +.ag [y = b+ baax T +.by
e™ v =Ae™, if ot is not a root of am® + bm + ¢ =0
v = Axe™, if « is a non-repeated root of am* +bm+c=0
y = Ax*e™, if o is a repeated root of am” + bm + ¢ = 0
xe“ v = (dx + B)e™, if et is not a root of am” + bm + ¢ =0

vy = (sz + Bx)e™, if « is a non-repeated root of am” +bm+c=10

y = (Ax® + Bx)e™, ifais a repeated root of am® +bm+c =0

Ccosax + Dsincx |y = Acos ax + Bsin ax, it is not a root of am® +bm+c=0

v = x{dcos ax + Bsin ax), io is a root ofam® +bm +c¢ =0

2

The Pl is then determined by ensuring that it satisfies a Z ); +b%+ cy = fx).
X

WORKED EXAMPLES

Example 1
Find the general solutions of the following differential equations:
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2
(a) i’x); +5

2
(c) d y+2g’£

2
X

Solution

(a) Stepl:

Step 2:

Step 3:

(b) Step 1:

Step 2:

Step 3:

dy
6y =7e" b
e (b)

dzy

2

d
4% 14y = 255inx
dx

+5y=e™"
d’ d

Solve —“;}+5—y—6y =0
dx dx

Auxiliary equation ism” +5m -6 =0 (m +6)m—1) =0
Thus the complementary function (CF) is y = Ae’® + Be” .

For the Particular Integral (PI), try y = Cx¢" (1 is a non-repeated root).

y = Cxe" = @ =Ce* +Cxe”*

dax
2

= ‘Z L = Ce* +Ce” +Cre” = 2Ce* +Cxe’
Substitute these valuf:s in the differential equation to give:
2Ce" + Cxe" + 5Ce" + 5Cxe" — 6Cxe” = Te*
= 7Ce" =7
= (C=1
So, Plisy =xe"

General solution is (CF + PI) i.e y=Ae™ + Be* +xe*

d’y . dy
—4--+4y=0(
x? dx Y

Solve the equation

Auxiliary equation is m° —d4m + 4 =0 (m—2)(m—-2) =0
Thus the CF is y = de* + Bxe™.

For PI, try y =kcos x + [sinx

d .
¥ =kcos x + Isinx = ayz-ksmxh’cosx
a: .
= );:—kcosx—lsmx
dx

Substituting in the differential equation gives:
—kcosx—Isinx + 4ksin x —4{cos x + 4kcos x + 4/sinx = 25sin x
= 3k —4Dcosx + (4% + 3D sinx = 25sinx

equating coefficients 3k—4i=0
4k+3[=25 =k=4and/=3

Thus, PI = 4cos x + 3sinx

General solution is CF + Pl i.e. y = Ae™ + Bxe™ + 4cos x + 3sin x
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2

d

)2) + Zdl
dx dx
Auxiliary equationis m* + 2m +5=0=>m =-1 £ 2
Thus CF is y = e™{4cos 2x + Bsin 2x).

(c) Step 1:  Solve the equation

+5y =0

Step 2:  ForPL try y =ce™

d d’
y=ce' = Yo e = )2}— -
dx dx

Substitute in the differential equation to give:

X

ce™ -2ce’+5¢ceT=e = 4ee"=e” = ¢=
1,
Thus, PI Isy:Ze

Step 3:  The general solution is CF + Pl i.e. y = e*(4Acos 2x + Bsin 2x) + %e'x

Example 2
Find the general solution of the differential equation:
d’y 1,
— = —X
at 2
. ) . . dy
and the particular solution which satisfies y = e 0 atx=0.
X
Solution
. d?

Step 1: Solve the equation aix/: -y=0

Auxiliary equationis m*—1=0 = m-Dm+1) =0, => m=+1

Thus CF is y = de" + Be™

2
Step 2: ForPl try y=ax* +bx+¢ = @v:2ax+b = d“;):Za
dx dx

Substitute in differential equation to give:

2a—ax’ —bx—c = }2~x2

equate coefficients:

-a= ulu,—b:O, 20—c=0

2
. 1
ie.a=-—, b=0 andc =-L
2
. 1 ;
Thus Pl is y :——Z—X -1
_ x 1

Step 3: General solution is y = Ae* + Be™ - Exz -1
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d
Step 4: ﬁ:AeuBe*—x Atx=0,y=0 = A+B-1=0

& =0=4+B=0
dx

e d= l and B = l
2 2

1
Particular solution is y = —¢" + le"‘ - lxz -1
2 2 2

Example 3

, . . Copdl . . .
Earlier we solved the differential equation L d_ + RI =V using the integrating factor method. IfJ =
f

0 when ¢ = 0, try solving this equation using the method of this section.

Solution
, di
Stepl: Salve the equation L d— +RI =0
t
‘Auxiliary equation’ isLm + R=0= m = Z
_E,
Thus CFis I = de *
Step 2: ForPlury /=%
df e . .
I=k= o =0 and so substituting in the equation gives Rk = I/
¢
Le. k= 4
R
L -tV
Step 3: General solution is [ = de £ +E

R
Whent:D]=0soOZA-i—K thus A:—K and[IK(l—e Ly
R R R

Further advice on finding Pls
If f(x} is a sum of terms, e.g. flx} = px) + g{x) and

dzy

2

y=ulx)isaPlof a +b%+cy:p(x)

2
and y=v(x)isaPIofaZy

2
X

dy
+h=—+cy=q(x)
dx YT

then it can easily be shown that
2

d d
y=ulx)+vix)isaPlof a ’12)+b—y+cy:p(x)+q(x)
dx dx
Example 4
. d’ d
Solve the equation —); 4% 3y =9 +65cos2x
dx dx
d’y  dy
Step 1: Solve ~4=+4+3y=0
P i dr

Auxiliary equation ism° —4m +3=0= (m—1)(m—3) =0
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Hence complementary function is y = Ae* + Be™

Step 2: For PItry y = ax + b + (csin2x + dcos2x)
2

% =q + 2ccos2x — 2dsin2x  and j’ ); = — 4esinZy — ddcos2x
X

Substituting into the equation gives: -

—4(esin2x + dcos2x) — 4(a + 2ccos2xy — 2dsin2x) + 3lax + b + ¢sin2x +
dcos2x) = 9x + 65cos2x

iLe. (84 — ¢)sin2x ~ (d + 8¢)cos2x +3ax + (3h — 4a) = 9x + 65c0s2x
Equating coefficients (84 — ¢} = 0; {d + 8c)=—65;3a =9; (36— 4a} =0
Hencea=3;b=4,d=-1;c=—8andsothe Plis
y =3x +4— (8sinZt + cosZy)
Step 3: General solution is y=Ae* +Be™ + 3x + 4 — (8sin2x + cos2x}

Example 5
If a potential V (volt) is applied to a simple circuit with inductance L (henry),
resistance R (ohm) and capacitance C (farad), then the charge ¢ (coulomb) on the

2
d
capacitor after time t seconds is given by L d g +RY L4y,
dr dt C
Find a formula for ¢ where, L = 5x10”, R=6,C = 107 and V = 100.

Solution

2

2 2
Equation is O-OOSZ—q+6z—q+1000q ~100 ie. ©9 +1200%9 + 2000004 = 20000
t

t? dt dt
2
Step 1: Solve the equation ‘;g’ +1zoo‘;‘f +200000g =0

Auxiliary equation is m* + 1200m + 200000 = 0
m? + 1200m + 200000 = 0 = (m + 200)(m + 1000) =0

CFis g = de ™ + Be™ ™™
Step 2: For Pl try ¢ = k. Substituting in equation 0 + 0 + 200000k = 20000

Hence Plis g = L
10

1
Step 3: General solution is ¢ = de *™ + Be™™" + —

10

EXERCISE ON DIFFERENTIAL EQUATIONS
1. Find the solution of the differential equation %"f’ ay =b, where g and & are

non-zero constants, for which y = 0 when x = 0.

. . . . d
2. Find the general solution of the differential equation Ey =x+y.

. . . d
3. Find the general solution of the differential equation xEy -2y + Jx=0.
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dy

4. Find the general solution of the differential equation COSXE + ysinx =1.
Find the solution satisfying the condition y = Y2 when x = % and the minimum
value of y for this solution.

. : ) . i d’y _dy — :

5. Find the solution of the differential equation F+ 6E+ 5y =4e™ for which

ay
=-==0 atx=0.
4 dx
. . . . . d Zy
6. Find the general solution of the differential equation pey +4y =12cos4x.
X
) . . . . d 2y dy
7. Find the general solution of the differential equation 2 e +;’; —y=x and the
X
particular solution for which y(0) = 0 and y'(0) =1.
8. Find the general solution of the differential equation
d’y d
XY 4y =s5420-1247
dx®  dx
. . d . . :
If, in addition, y = 12 and Ey =10 when x =0, find the particular solution.
Answers
1 oy=2a-e)
a

2. y=ce’ -x-1
2

3. y= ng +ex’

4. y=sinx+kcosx;y=8Iinx+cosx; ~2
1 1

5. y=—e —"e ™  +xe*

YT Ty

6. y=Acos 2x + Bsin 2x — cos 4x

7. y=Ade +Be¥ —x-1, A=2,B=-1

8. y=Ae3x+Be’2x+ 2°—x.: A=7,B=5
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FURTHER MATHEMATICS

Earlier we verified that Ae*"cos f3x + Be"sin [ix , where A and B are arbitrary

2
dy+bdy

constants, is the general solution of the differential equation a ~ E +cy =0,

where a * /3, with « and 3 real and f3 > 0 are roots of the auxiliary equation
am® + bm + ¢ = 0. But what leads us to consider Ae*“cos fix + Be®sin [3r in the first
place?

When the auxiltary equation has real roots m, and m, the general solution is
Ae™ + Be™ and so, assuming that we can differentiate functions of a complex
variable we would expect the general solution to be y = Ce'*®* + De*®* where C

and D are arbitrary constants.
Now Ce ™ £ De'“ P = Ce™ ¢ iDe™ ™™ = ™ (Ce™ +De™™)
At the end of the section on power series it was shown that

= % (cos +isin0) and ™ = % {cos O — isin 9)

. : 1 1
Thus Ce™ +De™™ =3 Clcos fix +7sin fx) + ED(cos [ — 7sin fix)

1t

%(C + D)cos fix + % (C — D)isin f3x

Acos [x + Bsin [ix
Hence Ce' ™™ + De' ™ =¢™(4cos (3 + Bsin fx)
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RESOURCES
Differential equations

Understanding Pure Mathematics (Sadler & Thorning)
Chapter 20 (first order differential equations)
pp517 — 519 (second order differential equations (homogeneous))

Caleulus (IHunter)
pp-200 - 218
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FURTHER NUMBER THEORY AND FURTHER METHODS OF PROOF

CONTENT

know the terms necessary condition, sufficient condition, if and only if, converse,
negation, contrapositive

use further methods of mathematical proof:
some simple examples involving the naiural numbers

direct methods of proof: sums of certain series and other straightforward results
eg.x>1= x° > 1, the triangle inequality, the sum to n terms of an arithmetic or
geometric series

further proof by contradiction
e.g. if x, y € Rsuch that x + y is irrational then at least one of x, y is trrational

proof using the contrapositive
e.g. if m, n are integers and mn = 100, then either m < 10 or n < 10
e.g. is 7 is not a factor of n° then 7 is not a factor of n

Teaching Notes

This is an extension of the work on proofs undertaken in Mathematics 2(AH) which
involved methods of direct and indirect proof, including proof by induction and
disproving a conjecture by use of a counter example.

In mathematics we encounter results like:
(a) ifx>3thenx®>9, wherex ¢ Z
(b) if fix) = " thenf'(x) = nx""

(c) if z=c05§+isin§ then z° = —1

These results are stated in the form “if p then ¢”, where p and g stand for statements.

Many of other results can be expressed in this form e.g. the Theorem of Pythagoras can be expressed as
- If, in triangle ABC, B = 90° then AC? = AB® + BC*

Statermnents that can be proved to be true on the basis of clearly stated assumptions are usualiy called
theorems, However statements of the form “if p then g” are not always true and may be an (informed)
guess made on the basis of an observation made during an investigation which has then to be proved to
be true or proved to be false.

For example,

(1) Are there an infinite number of twin primes, # and n + 2? (unproved)

(i)  Is 2% +1 prime for allz € N? (erroneous, holds for » = 1, 2, 3, 4 but not for
all higher values)

BACKGROUND

One approach to illustrating this topic is through the consideration of solution sets.

In example (a) above, viz “If x > 3 then x> 9, wherex € Z7, p is the statement: x >
3, x € Z and g is the statement: x> 9 xe 7,
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Let P be the set of those integers x which are greater than 3, written symbolically as
P=1{x:x>3,xe Z}. Thenifx > 3, x € Z means the same as if x is a member of P
which is written symbolically as ifx € P.

Let Q= {x: x> 3 x e Z}. Then then x> 9, x € Z means the same as thenx € Q.

Hence the compound statement if p then ¢ means the same as if x € P thenx € Q
and if p then q is true if every x in P is also in Q, ie if P is a subset of Q. [P c Q]

So proving that if p then g is true is the same as proving that P < Q.

NowP=1{4567,.............. Yand Q ={....-5,-4,4,5,6,7,....... }
Clearly P ¢ Q and so “if p then g” is true.

NECESSARY CONDITIONS and SUFFICIENT CONDITIONS
The relationship between the sets P and Q is illustrated in the Venn Diagram below

o

Z

In ‘mathematical English’ the words necessary and sufficient have precise meanings.

From the diagram above it is seen that in the situation where P < (3
For x € Q it is sufficient but not necessary that x € P.
For x € P it is necessary but not sufficient thatx € Q.

Similarly in the corresponding situation of proving “if p then ¢” is true;

It is a sufficient condition but not a necessary condition that p is true.
It is a necessary condition but not a sufficient condition that g is true.

CONVERSE
The converse of “if p theng” is “ if g then p” and this is true if Q C P

Clearly Q ¢ P in the illustratory example and "if g then p” is false
i.e.in this case the statement is true but the converse is false.

( Had the initial statement been “if %% > 9 then x > 3” then it would have been false but
the converse would have been true.)
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NECESSARY AND SUFFICIENT CONDITIONS

In some situations the statement is true and its converse is also true.
For example “In AACB, if £C = 90° then c=a*+b%” can be proved true as can its
converse “In AACB, if ¢ =a® + b then £C =90°"

In a situation where “if p then ¢” and “if ¢ then p” are both true we say “ p is true if and only if g is
true”

Inthiscase Pc Qand Q g Pandso P=Q and forx € Q it is sufficient and necessary that x € P and
we say “A necessary and sufficient condition for g to be true is that p is true”

THE NEGATION OF A STATEMENT
The negation of a statement p is a statement saying the opposite to p.

For example if p is “ x > 3" then its negation is “x » 3" or “x £ 3”.
We denote the negation of p by ~p i.e. if pis “x > 3" then ~pis “x < 3”

“if ~p” is the same as “if x € {x:x < 3}".
{x:x £ 3,xe Z}is called the complement of {x:x >3, xe Z}

The complement of P is
sometimes denoted by P’as
illustrated on the right

CONTRAPOSITIVE
Clearly P < Q is equivalent to Q' P’
i.e. “if p then g7 is true & “if ~ g then ~ p” is true.

“if ~ ¢ then ~ p” is called the contrapositive of “if p then g”
METHODS OF PROOF

Direct Proof

In the Teachers’ Notes for Mathematics 2(AH) divect proof was described in the
Jfollowing terms “One form of proof is to work from the truth of one or more already
known statements to the statement we wish to prove true. Linking statements in this
way provides a direct proof”.

In the above context we work from the truth of the statement p through linking true
statements until we prove the truth of .

A number of examples of direct proof have appeared in the Teachers’ Notes for
Mathematics 1(AH), Mathematics 2(AH) and earlier in this unit.
Indirect Proof

On occasions it is difficult (impossible} to prove a statement by direct means and consequently we
employ indirect methods

Proof using the contrapositive
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As indicated above “if ~ g then ~ p” is called the contrapositive of “if p then g™ and if
one is true then so is the other. Sometimes it is easier to prove the contrapositive of a
statement true than prove the statement true.

Example 1
Prove that if m, n are integers and mn = 100, then either m < 10 orn £ 10

Solution
Statement: If m, n are integers and mn = 100, then either m
<10 orxn < 10.

Contrapositive: If m, n are integers and m > 10 and n > 10 then mn #
100.

Proof of contrapositive
m > 10andn > 10 = mn > 100 = mn = 100

Contrapositive is true. Hence the statement is true.

Example 2

Prove that if 7 is not a factor of #° then 7 is not a factor of 1

Solution

Statement: If 7 is not a factor of % then 7 is not a factor of n
Contrapositive: If 7 is a factor of n then 7 is a factor of n’ '

Proof of contrapositive

7 is a factor of n = n = 7m for some integer m
= n’ = (Tm)? = 49m°
= 7 is a factor of m°

Contrapositive is true. Hence the statermnent is true.

Example 3
Prove that if x and y are integers and xy is odd then both x and y are odd.

Solution
Statement: If x and y are integers and xy is odd then both x and y
are odd

Contrapositive: If x and y are integers and at least one of x or y is even the xy is
even

Proof of contrapositive
at least one of x cr y is even
= x = 2m ory = 2r for some integer » or n
=> xy = Zmy or xy = Znx for some integer m Or 1

= xy is even

Contrapositive is true. Hence statement is true.
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Proof by Contradiction

The basis of this form of proof is that a statement and its negation cannot both be true.
We make an initial assumption in the form of a statement r (usually denying the truth
of the original statement) and then proceed to prove that ~ 7 is also true. As this is an
impossibility (a contradiction) so our initial assumption is false and hence the
statement is true.

The Teaching Notes for Mathematics 2(AH) contain a proof by contradiction for the
statement that +/2 is irrational.

In the proof we assumed that J2 is rational Le. that +/2 == where m and n are
n

integers. We further assumed, without any loss of generality, that
r: “m and » have no common factor” is true

and then proceeded to prove that as a direct consequence of this assumption that
~r:“mand n have a commen factor” is

true

Since # and ~ # cannot both be true we have a contradiction and so our initial
assumption that V2 is rational is wrong and consequently J2 is irrational.

Exampie 1
Prove that if x, y € R such that x + y is irrational then at least one of x, v is irrational

Solution
Assume that “x, y € R such that x + y is irrational and x, y are both rational”

x +y is irrational and x, y are both rational

= x=2 and y = £ for some integers m, #n, p and g.
r q
+
=x+y= mare for some integers m, n, p and g.
ng

= X +y is rational

This is a contradiction and so the initial assumption is wrong.
Hence if x, y € R such that x + y is irrational then at least one of x, y is irrational is
true.

Example 2
Let x and y be integers. If xy is an odd integer, prove that x and y are both odd.
Solution

Suppose xy is an odd integer and at least one of x and y, x say is even.
xj is an odd integer and at least one of x and y, x say is even
= x = 2z, where z is an integer.
=xy=2zy
=Xy is even.

This is a contradiction and so x and y are both odd.
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CONTENT

further proof by mathematical induction

prove the following result : Zrz = éi’l(l’l +1D2n+1); ne N

=1

Teaching Nofes

Proof by induction was introduced in Mathematics 2(AH) and the teaching notes
provided an explanation of the process.

Prove that Zrz :%n(n+1)(2n +1):; neN

r=l

Whenn =1, Zr =1°=1and —n(n +1)(2n+1) = 2142.3 =1 so result true forn =1

r=]

Assume that the result is true for a parucuiar positive integer &,

i.e that zr _-_k (k+D(2k +1)

£+l i

;,»2:;;»2+(k+1)2 =gk(k+1)(2k+1)+(k+1)2
zé(k+l)[(2k2+k)+6(k+l)]
=-é(k+l)[2k2+7k+6]
:%(k+1)[(k+2)(2k+3)]

:—é—[k-f'l]([k +1}+1 2Lk +1]+1)

Thus if result is true forn =k itis true forn =& + 1.

Since it is true for n = 1 by induction it is true for all positive integers

WORKED EXAMPLES

Example 1
Prove by induction that, for all positive integers #»,

P43 +5+.. .. +02n-1)°= ';—}’1(21’1—1)(2]1+1)

Solution

Forn=1, LHS=1; RIHS = %.1.1.3 =1, hence true forn =1

Suppose true for a particular positive integer .

Then 1°+3°+5%+ ... +Qk—1P*+2k+1)°
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%k(Zk— DCk+1) + 2k +1)°

Lok v k- 1) + 362 + 1]

2k + 1)k + 5k + 3)

2k+ Dk+ 12k +3)

Wil = W= W

~k+1D2k+1)2k+3)

:% k+ 1]k +1]- DK +1]+1)

Thus if result is true forn =k it is true forn =4 + 1.
Result is true for n = 1, hence, by induction, result is true for all positive integers x.

Example 2
Prove, that for all positive integers #, u, = 9" + 7 is divisible by 8.
Solution

u; =9' + 7 =16 and 16 is divisible by 8 so result is true for n = 1.

Assume that result is true for a particular positive integer &
i.e. assume u; = 9° + 7 is divisible by 8.
1.e. assume ; = 8¢ for some positive integer g.

U1 =9 47 =99+ 7= B+ +7=8.9 +9* +7=8.9" +u

Hence, since u; is divisible by 8w,z is divisible by 8

Thus if result is true forn =k itis trueforn =k + 1.

But result true for » = 1 so by induction result is true for all positive integers 7.
Example 3

Prove that for all positive integers n, that n’ —n is divisible by 6.

Solution

Whenn =1, n’ —n=0. Now 0 is divisible by 6 so result is true for n = 1

Assume the result is true a particular positive integer &, i.e. assume k° — k is divisible
by 6

Consider (k + 1)° — (K + 1)

k+ 1P =G+ D) =E+3F+3k+1-k+ D)= +3k°+ 2%k =k -k + 3>+ 3k
Hence, (& + 1) — (k+ 1) = &' — &) + 3k(k + 1)
Either & or k& + 1 is even so &£k + 1} is divisible by 2 and so 3 &k + 1) is divisible by 6

Hence, since £ — k is divisible by 6, (k+ 1% — (£ + 1) is divisible by 6
soifresulttrueforn =kitistrueforn =4 + 1

But result is true for 7 = 1 so by induction the result is true for all positive integers 7.
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CONTENT

nlln+1)?

Fid
know the result : Zr‘3 ==
r=1

r=1 r=1

2 2 2
z z +1
e.g. proof of the result Zr3 = [ZrJ = _’L(’:—) is a useful extension

apply the above results and the one for Zr to prove by direct methods results
r=l

concerning other sums

e.g. Z;r(r+l) :%n(n +1Di{n+2)

eg Yrirr+2) :%n(n D+ 2 +3)

r=1

n+1)?

n 2
The result : Zr3 _nd "
r=1

Students could investigate the sums 42 r forn=1,234,. ..They should notice

r=l

that the sums are each the square of a number which is the product of two consecutive

integers, e.g 36 = 6° = (2x3)*; 144 = 12* = (3x4)? e.t.c. and conjecture that
42 r* =n*(n + 1)*. The result can then be proved true by induction.
r=1

Example 1
Solution

Show that Zr(r +1) :%n(n +1}n +2)

r=l1

Zr(r+l) :Zr2+2r :%n(n+1)(2n+1)+ ;n(ﬂ-}- 1)
=1 =1 r=l

uln + 1){2n + 1) + 3]
nln+ 1320k + 2)

Dn+2)
Example 2

Show that 3 r(+1)(-+ 2) =l + D+ 2)n+ 3

r=1
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Solution

M

ir(r+l)(r+2) =Y (" + 37 +2r) = Z”:rs + 32}“2 + Zir
=l r=l r=l e

r=1

= —n*n+ 1%+ 3.(1311(11 +1D@a+1) + 2.%1’1&1 +1)

!

nn+ 1) nkr+1)+2Cn+1) +4]

nln+ 1)n®+ 50 + 6)

11

B e N B - [T S N P

an+ 1w +2)n+3)
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CONTENT

know the division algerithm and proof

use Euclid’s algorithm to find the greatest common divisor (g.c.d.) of two positive
integer

i.e. use the division algorithm repeatedly

know how to express the g.c.d. as a linear combination of the two integers [A/B]

use the division algorithm to write integers in terms of bases other than 10 [A/B]

Comments

The special cases of finding the g.c.d. of two Fibonacci numbers are possible
extensions.

Teaching Notes
DIVISION ALGORITHM

For given integers a and b, with b > (, there exist integers g and » such that
a=bg+r, 0 05r<b

Proof
On the real number line, the integers a,a —b, a —2b, ... form a decreasing sequence
with only finitely many of the terms = 0.
Thus there is a unique integer g for which
a—-g+b<0<a-—gb
and so 0<a-gb<b
Writingr =a -gb thena=gb+r,05r<b
To show that ¢ and » are unique, suppose thata =gih +r1, 0 <b
Then ri=a-gp and 0<a—-g/b<bh
So that a—{g1+b<0sa—gib

i.e. g1 is the integer defined above as g.

EUCLID’S ALGORITHM [A/B]
Euclid’s algorithm is concerned with finding the greatest common divisor (g.c.d} of two positive
integers and is based on repeated application of the division algorithm.

Thus, for integers a and b,
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a=q1b+r1, 0Si”1<b
bzqu"l‘i‘f"z, 03?‘2(?’1
Fl=gys s, 0<r<r

until Faz2=qun1 + 7y
Fu-1 :qu—lrﬂ +O

Starting with the last statement and working towards the first one we see that:
Fultea andso vy |r.. andso r|r,; etc. untiler,|rm andr| b andr,|a

Hence #, |d , whered isthe g.c.d. of a and b (sincer,iaandr, | b )

Starting from the first statement and working to the last one we see that;
rlzagqlbzmi]rl;r2=b7q2r1:>d|rg ................ $d|rﬂ

We have shown that », |dand d | », thusr, =d.

A common notation used for the g.c.d. of @ and b is {g, &)

USING EUCLID’S ALGORITHM TO FIND THE G.C.D. OF TWO POSITIVE
INTEGERS

Example
Find (3657, 2703)
Solution
3657 = 1x2703 + 954
2703 = 2x954 + 795
954 = 1X795 + 159
795 = 5x159 + 0

- (3657, 2703) = 159

EXPRESSING THE G. C. D. OF TWO POSITIVE INTEGERS AS A LINEAR
COMBINATION OF THE TWO INTEGERS. (A/B)

Example

(i) Use Euclid’s algorithm to find the g.c.d. of 2873 and 6643.
(ii)Hence find integers s and ¢ to write this g.c.d. in the form 5.2873 + £.6643

Solution

(1) 6643 = 2 x 2873 + 897
2873 =3 X 897 + 182
897 =4 x 182 + 169
182 =1x 169+ 13
169 =13x13+ 0

so, (2873, 6643) =13

{ii) from 2™ bottom line above,
13=182 -1x 169

=182 — [897 — 4 x 182]) = 5 x182 — 897
= 5[2873 — 3 x 897] — 897 = 5 x 2873 — 16 X 897
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=5x 2873 - 16[6643 — 2 x 2873]
= 37 x 2873 — 16 X 6643

Le.s=37andt=-16

REPRESENTATION OF INTEGERS IN BASES OTHER THAN TEN {A/B]
Another applicaticon of the division algorithm is to express numbers in bases other than ten

For example, to write 797, in base seven we apply the division algorithm by dividing
repeatedly by seven as follows:

797 = Tx113 + 6

113 = 7x16+1

16 = 7x2 +2

2 = 7x0 +2 Therefore 797.cn = 22160ven

Justification

797 =7%x 113 +6
=7(7x16+1)+6
=7"x16+7x1+6
=7 IX2+2D+7%1+6
=T X247 x2+7%x1+6
=2.7+27°4+1.7+6

In general, if g is a positive integer greater than 1, then each positive integer a can be expressed
uniquely in the form:
a=cg" +co 8+ ... +cig+cy where 0<¢;<n—-1,and0<c,<g—1
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EXERCISE ON FURTHER NUMBER THEORY

1. Give an example of two unequal positive integers s, # such that Vm, Va are both
irrational while V(mn) is rational.

2. Determine whether each of the following assertions about integers is true or false.
If true, prove the result, and if false give a counter example.

D Ifb (@ +1) thenb | (@* +1)
iy If 6] @+ 1) thend | *-1)
iti)If p is prime and p |a and p | (a° + 5% thenp | b

(
(
(
(iv)If p is prime and p |a and p | (a” + 6b%) thenp | b

3. Prove by induction that, for all integers n = 2,

HEE ey

4. Prove that V6 is irrational,

5. Prove that, if n” is odd, where 7 is an integer, then » is odd.

6. Prove that Zrz (r+1 = %z—n(n +Dm+2){30+1)

r=l

7. Use Euclid’s algorithm to find the g.c.d. of 7293 and 798 and express this g.c.d as
7293x + 798y where x and y are integers.

8. Write 728 in the scale of 5.

9. Use Euchlid’s algorithm to find integers a and 4 such that 93a + 256 = 1.

Answers

1. m=2,n=8 say

2.

(1) Feg a=2andb=5
(i1) T

(iii) T

(

iv)] Feg p=2,a=40=3
77293, 798) = 3; 3=(-115) x 7293 + 1051 x 798, i.e.x=-115 and y = 1051

8. 728 = 104035
S.a=7,b=-26
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RESOURCES
Further Number Theory and Further methods of proof

Algebra and Number Systems (Hunter)
Chapters 1, 5 and 6.

Mathematics in Action 68
Chapter 2
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