Advanced Higher Maths

Complex Numbers

<u>2001</u>

- (a) Given that $-1 = \cos \theta + i \sin \theta$, $-\pi < \theta < \pi$, state the value of θ .
- (b) Use de Moivre's Theorem to find the non-real solutions, z_1 and z_2 , of the equation $z^3 + 1 = 0$.

Hence show that $z_1^2 = -z_2$ and $z_2^2 = -z_1$.

(c) Plot all the solution of $z^3 + 1 = 0$ on an Argand diagram and state their geometrical significance.

<u>2002</u>

Verify that *i* is a solution of $z^4 + 4z^3 + 3z^2 + 4z + 2 = 0$. Hence find all the solutions

<u>2003</u>

(1) Identify the locus in the complex plane given by |z+i| = 2 (3 marks)

(2) Given that $w = \cos \theta + i \sin \theta$, show that $\frac{1}{w} = \cos \theta - i \sin \theta$. Use de Moivre's Theorem to prove $w^k + w^{-k} = 2\cos k\theta$, where k is a natural number. Expand $(w + w^{-1})^4$ by the binomial theorem and hence show that

$$\cos^{-}\theta = -\cos 4\theta + -\cos 2\theta + -.$$
(1, 3, 5 marks)

<u>2004</u>

Given z = 1+2i, express $z^2(z+3)$ in the form a+ib. Hence, or otherwise, verify that 1+2i is a root of the equation $z^3 + 3z^2 - 5z + 25 = 0$.

Obtain the other roots of this equation.

national5maths.co.uk

(5 marks)

(1,5,2,3 marks)

Advanced Higher Maths

national5maths.co.uk

<u>2005</u>

(1) Given the equation
$$z + 2i\overline{z} = 8 + 7i$$
, express z in the form $a + ib$. (4 marks)

(2) Let $z = \cos \theta + i \sin \theta$.

- (a) Use the binomial expansion to express z^4 in the form u + iv, where u and v are expression involving $\sin \theta$ and $\cos \theta$.
- (b) Use de Moivre's theorem to write down a second expression for z^4 .
- (c) Using the results of (a) and (b), show that $\frac{\cos 4\theta}{\cos^2 \theta} = p \cos^2 \theta + q \sec^2 \theta + r, \text{ where } -\frac{\pi}{2} < \theta < \frac{\pi}{2},$ stating the values of p, q and r.

(3, 1, 6 marks)

<u>2006</u>

Express the complex number $z = -i + \frac{1}{1-i}$ in the form z = x + iy, stating the values of x and y. Find the modulus and argument of z and plot z and \overline{z} on an Argand diagram.

<u>2007</u>

(1) Show that z = 3 + 3i is a root of the equation $z^3 - 18z + 108 = 0$ and obtain the remaining roots of the equation.

(4 marks)

(3, 1 marks)

(3, 4 marks)

(2) Given that |z-2| = |z+i|, where z = x+iy, show that ax+by+c = 0 for suitable values of a, b and c. Indicate on an Argand diagram the locus of complex numbers z which satisfy |z-2| = |z+i|.

<u>2008</u>

Given $z = \cos \theta + i \sin \theta$, use de Moivre's theorem to write down an expression for z^k in terms of θ , where k is a positive integer.

Hence show that $\frac{1}{z^k} = \cos k\theta - i \sin k\theta$. Deduce expression for $\cos k\theta$ and $\sin k\theta$ in terms of z. Show that $\cos^2 \theta \sin^2 \theta = -\frac{1}{16} \left(z^2 - \frac{1}{z^2} \right)^2$. Hence show that $\cos^2 \theta \sin^2 \theta = a + b \cos 4\theta$, for suitable constants a and b.

(3, 2, 3, 2 marks)

Given $z = r(\cos \theta + i \sin \theta)$, use de Moivre's theorem to express z^3 in polar form.

Express $z = \frac{(1+2i)^2}{7-1}$ in the form a+ib where a and b are real numbers.

Hence obtain $\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)^3$ in the form a + ib.

Show z on an Argand diagram and evaluate |z| and $\arg(z)$.

Hence, or otherwise, obtain the roots of the equation $z^3 = 8$ in Cartesian form.

Denoting the roots of $z^3 = 8$ by z_1 , z_2 , z_3 : (a) state the value $z_1 + z_2 + z_3$; (b) obtain the value of $z_1^6 + z_2^6 + z_3^6$.

<u>2011</u>

2009

2010

Identify the locus in the complex plane given by

Show in a diagram the region given by $|z-1| \le 3$.

<u>2012</u>

$$z^3 + 5z^2 + 11z + 15 = 0,$$

|z-1| = 3.

obtain all roots.

Plot all the roots on an Argand diagram.

(2) (a) Prove by induction that

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$ for all integers $n \ge 1$.

(b) Show that the real part of
$$\frac{\left(\cos\frac{\pi}{18} + i\sin\frac{\pi}{18}\right)^{11}}{\left(\cos\frac{\pi}{36} + i\sin\frac{\pi}{36}\right)^4}$$
 is zero.

www.national5maths.co.uk

Advanced Higher Maths

(4, 2 marks)

(6 marks)

(5 marks)

(1, 2, 4, 3 marks)

Advanced Higher Maths

(2, 3 marks)

<u>2013</u>

	—	-2	
(1) Given that $z = 1 - \sqrt{3}i$, write	e down z and	f express z in polar form.	(4 marks)

(2) Describe the loci in the complex plane given by:

- (a) |z+i|=1;
- (b) |z-1| = |z+5|.

<u>2014</u>

(a) Express -1 as a complex number in polar form and hence determine the solutions to the equation $z^4 + 1 = 0$.

(b) Write down the four solutions to the equation $z^4 - 1 = 0$.

(c) Plot the solutions of both equations on an Argand diagram.

(d) Show that the solutions of $z^4 + 1 = 0$ and the solutions of $z^4 - 1 = 0$ are also solutions of the equation $z^8 - 1 = 0$.

 $z^{6} + z^{4} + z^{2} + 1 = 0.$

(e) Hence identify all the solutions to the equation

(3, 2, 1, 2, 2 marks)

<u>2015</u>

By writing z in the form x + iy:

- (a) solve the equation $z^2 = \left|z\right|^2 4$;
- (b) find the solutions to the equation $z^2 = i(|z|^2 4)$.

(3, 4 marks)