Matrices

2001

Let
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & -1 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 & 1 \\ 4 & -2 & -2 \\ -3 & 2 & 1 \end{pmatrix}$

Show that AB = kI for some constant k, where I is the identity matrix. Hence obtain (i) the inverse matrix A^{-1} and (ii) the matrix A^2B .

2002

(1) A matrix
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$$
. Prove by induction that $A^n = \begin{pmatrix} n+1 & n \\ -n & 1-n \end{pmatrix}$, where *n* is a positive integer. (6 marks)

(2) Write down the 2×2 matrix A representing a reflection in the x-axis and the 2×2 matrix B representing an anti-clockwise rotation of 30° about the origin.

Hence show that the image of a point (x, y) under the transformation A followed by the

transformation *B* is
$$\left(\frac{kx+y}{2}, \frac{x-ky}{2}\right)$$
, stating the value of *k*. (4 marks)

2003

The matrix A is such that $A^2 = 4A - 3I$ where I is the corresponding identity matrix. Find integers p and q such that $A^4 = pA + qI$. (4 marks)

2004

Write down the 2×2 matrix M_1 associated with an anti-clockwise rotation of $\frac{\pi}{2}$ radians about the origin. Write down the matrix $\,M_{\,2}\,$ associated with reflection in the x-axis.

Evaluate M_2M_1 and describe geometrically the effect of the transformation represented by M_2M_1 .

(2, 1, 2 marks)

2005

Given the matrix $A = \begin{pmatrix} 0 & 4 & 2 \\ 1 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix}$, show that $A^2 + A = kI$ for some constant k, where I is the 3×3 unit

matrix.

Obtain the values of p and q for which $A^{-1} = pA + qI$. (4, 2 marks)

(4 marks)

national5maths.co.uk

(4 marks)

(2, 2, 1 marks)

(2, 3 marks)

<u>2006</u>

(1) Calculate the inverse of the matrix $\begin{pmatrix} 2 & x \\ -1 & 3 \end{pmatrix}$.

For what value of x is this matrix singular?

(2) The square matrices A and B are such that AB = BA. Prove by induction that $A^nB = BA^n$ for all integers $n \ge 1$. (5 marks)

<u>2007</u>

Matrices *A* and *B* are defined by $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} x+2 & x-2 & x+3 \\ -4 & 4 & 2 \\ 2 & -2 & 3 \end{pmatrix}$.

(a) Find the product AB.

(b) Obtain the determinants of A and AB.

Hence or otherwise, obtain an expression for $\det B$.

<u>2008</u>

Let the matrix $A = \begin{pmatrix} 1 & x \\ x & 4 \end{pmatrix}$.

- (a) Obtain the value(s) of x for which A is singular.
- (b) When x = 2, show that $A^2 = pA$ for some constant p.

Determine the value of q such that $A^4 = qA$.

<u>2009</u>

Given the matrix $A = \begin{pmatrix} t+4 & 3t \\ 3 & 5 \end{pmatrix}$.

(a) Find A^{-1} in terms of t when A is non-singular.

(b) Write down the value of t such that A is singular.

(c) Given that the transpose of A is $\begin{pmatrix} 6 & 3 \\ 6 & 5 \end{pmatrix}$, find t. (3, 1, 1 marks)

national5maths.co.uk

<u>2010</u>

- (1) Obtain the 2×2 matrix *M* associated with an enlargement, scale factor 2, followed by a clockwise rotation of 60° about the origin.
- (2) Use Gaussian elimination to show that the set of equations

$$x - y + z = 1$$
$$x + y + 2z = 0$$
$$2x - y + az = 2$$

has a unique solution when $a \neq 2 \cdot 5$. Explain what happens when $a = 2 \cdot 5$.

Obtain the solution when a = 3.

Given
$$A = \begin{pmatrix} 5 & 2 & -3 \\ 1 & 1 & -1 \\ -3 & -1 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, calculate AB .

Hence or otherwise state the relationship between A and the matrix $C = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 2 \\ 2 & -1 & 3 \end{pmatrix}$.

<u>2011</u>

(a) For what value of
$$\lambda$$
 is $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ -1 & \lambda & 6 \end{pmatrix}$ singular?
(b) For $A = \begin{pmatrix} 2 & 2\alpha + \beta & -1 \\ 3\alpha + 2\beta & 4 & 3 \\ -1 & 3 & 2 \end{pmatrix}$ obtain values of α and β such that $A' = \begin{pmatrix} 2 & -5 & -1 \\ -1 & 4 & 3 \\ -1 & 3 & 2 \end{pmatrix}$.
(3, 3 marks)

<u>2012</u>

A non-singular $n \times n$ matrix A satisfies the equation $A + A^{-1} = I$ where I is the $n \times n$ identity matrix. Show that $A^3 = kI$ and state the value of k. (4 marks)

(4 marks)

^{(5, 1, 1, 1, 2} marks)

(1, 2, 2 marks)

<u>2013</u>

Matrices A and B are defined by $A = \begin{pmatrix} 4 & p \\ -2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix}$

(a) Find A^2 .

(b) Find the value of p for which A^2 is singular.

(c) Find the values of p and x if B = 3A'.

<u>2014</u>

Given A is the matrix $\begin{pmatrix} 2 & a \\ 0 & 1 \end{pmatrix}$, Prove by induction that $A^n = \begin{pmatrix} 2^n & a(2^n - 1) \\ 0 & 1 \end{pmatrix}$, $n \ge 1$. (4 marks)

<u>2015</u>

(1) Obtain the value(s) of p for which the matrix $A = \begin{pmatrix} p & 2 & 0 \\ 3 & p & 1 \\ 0 & -1 & -1 \end{pmatrix}$ is singular. (4 marks)

(2) Write down the 2×2 matrix, M_1 , associated with a reflection in the *y*-axis.

Write down a second 2×2 matrix, M_2 , associated with an anticlockwise rotation

through an angle of $\frac{\pi}{2}$ radians about the origin.

Find the 2×2 matrix, M_3 , associated with an anticlockwise rotation through $\frac{\pi}{2}$ radians about the origin followed by a reflection in the *y*-axis.

What single transformation is associated with M_3 ?

(4 marks)