Advanced Higher Maths

Systems of Equations

<u>2001</u>

Use Gaussian Elimination to solve the following system of equations.

x + y + z = 10	
2x - y + 3z = 4	
x + 2z = 20	(5 marks)

<u>2002</u>

Use Gaussian Elimination to solve the following system of equations.

x + y + 3z = 2	
2x + y + z = 2	
3x + 2y + 5z = 5	(5 marks)

<u>2003</u>

Use elementary row operations to reduce the following system of equations to upper triangular form.

x + y + 3z = 13x + ay + z = 1x + y + z = -1

Hence express x, y and z in terms of the parameter a.

Explain what happens when a = 3.

<u>2005</u>

Use Gaussian Elimination to solve the system of equations below when $\lambda \neq 2$.

$$x + y + 2z = 1$$

$$2x + \lambda y + z = 0$$

$$3x + 3y + 9z = 5$$

Explain what happens when $\lambda = 2$.

<u>2006</u>

Use Gaussian elimination to obtain solutions of the equations

$$2x - y + 2z = 1$$

x + y - 2z = 2
x - 2y + 4z = -1 (5 marks)

(2, 2, 2 marks)

(4, 2 marks)

Advanced Higher Maths

<u>2009</u>

Use Gaussian elimination to solve the following system of equations

$$x + y - z = 6$$

2x - 3y + 2z = 2
-5x + 2y - 4z = 1 (5 marks)

<u>2010</u>

Use Gaussian elimination to show that the set of equations

$$x - y + z = 1$$
$$x + y + 2z = 0$$
$$2x - y + az = 2$$

has a unique solution when $a \neq 2.5$.

Explain what happens when $a = 2 \cdot 5$.

Obtain the solution when a = 3.

<u>2012</u>

Use Gaussian elimination to obtain the solution of the following system of equations in terms of the parameter λ .

$$4x + 6z = 1$$

$$2x - 2y + 4z = -1$$

$$-x + y + \lambda z = 2$$

Describe what happens when $\lambda = -2$.

When $\lambda = -1.9$ the solution is x = -22.5, y = 8.25, z = 15.

Find the solution when $\lambda = -2 \cdot 1$.

Comment on these solutions.

<u>2014</u>

Use Gaussian elimination on the system of equations below to give an expression for z in terms of λ .

x + y + z = 2 $4x + 3y - \lambda z = 4$ 5x + 6y + 8z = 11

For what values of λ does this system have a solution?

Determine the solution to this system of equations when $\lambda = 2$.

(5, 1, 1 marks)

(5, 1, 2, 1 marks)

(6 marks)