Advanced Higher Maths

Vectors

<u>2001</u>

Let L_1 and L_2 be the lines

 $L_1: x = 8 - 2t, y = -4 + 2t, z = 3 + t$ $L_2: \frac{x}{-2} = \frac{y+2}{-1} = \frac{z-9}{2}.$

(a)(i) Show that L_1 and L_2 intersect and find their point of intersection.

(ii) Verify the acute angle between them is $\cos^{-1}\left(\frac{4}{9}\right)$.

(b) (i) Obtain an equation of the plane Π that is perpendicular to L_2 and passes through the point (1, -4, 2).

(ii) Find the coordinates of the point of intersection of the plane Π and the line L_1 .

<u>2002</u>

(a) Find an equation for the plane π_1 which contains the points A(1,1,0), B(3,1,-1) and C(2,0,-3).

(b) Given that π_2 is the plane whose equation is x + 2y + z = 3, calculate the size of the acute angle between the plane π_1 and π_2 .

(4, 2, 3, 2 marks)

2003

Find the point of intersection of the line $\frac{x-3}{4} = \frac{y-2}{-1} = \frac{z+1}{2}$ and the plane with equation 2x + y - z = 4. (4 marks)

<u>2004</u>

(a) Find an equation of the plane π_1 containing the points A(1,0,3), B(0,2,-1) and C(1,1,0). Calculate the size of the acute angle between π_1 and the plane π_2 with equation x + y - z = 0. (b) Find the point of intersection of the plane π_2 and the line $\frac{x-11}{4} = \frac{y-15}{5} = \frac{z-12}{2}$. (4, 3, 3 marks)

<u>2005</u>

The equations of two planes are x-4y+2z=1 and x-y-z=-5. By letting z=t or otherwise, obtain parametric equations for the line of intersection of the planes. Show that this line lies in the plane with equation x+2y-4z=-11.

(4, 1 marks)

Advanced Higher Maths

<u>2006</u>

Obtain an equation for the plane passing through the point P(1,1,0) which is perpendicular to the line L

given by $\frac{x+1}{2} = \frac{y-2}{1} = \frac{z}{-1}$.

Find the coordinates of the point Q where the plane and L intersect.

Hence, or otherwise, obtain the shortest distance from P to L and explain why this is the shortest distance.

<u>2007</u>

Lines L_1 and L_2 are given by the parametric equations

$$L_1: x = 2 + s, y = -s, z = 2 - s$$
 $L_2: x = -1 - 2t, y = t, z = 2 + 3t.$

(a) Show that L_1 and L_2 do not intersect.

(b) The line L_3 passes through the point P(1,1,3) and its direction is perpendicular to the directions of both L_1 and L_2 . Obtain parametric equations for L_3 .

(c)Find the coordinates of the point Q where L_3 and L_2 intersect and verify that P lies on L_1 .

(d) PQ is the shortest distance between the lines L_1 and L_2 . Calculate PQ.

```
(3, 3, 3, 1 marks)
```

(3, 4, 2, 1 marks)

national5maths.co.uk

<u>2008</u>

- (a) Find an equation of the plane π_1 through the point A(1,1,1), B(2,-1,1) and C(0,3,3).
- (b) The plane π_2 has equation x + 3y z = 2.

Given that the point (0, a, b) lies on both the planes π_1 and π_2 , find the values of a and b. Hence find an equation of the line of intersection of the planes π_1 and π_2 .

(c) Find the size of the acute angle between the planes π_1 and π_2 .

(3, 4, 3 marks)

(5, 2, 4 marks)

(4 marks)

Advanced Higher Maths

<u>2009</u>

(a) Use Gaussian elimination to solve the following system of equations

x+y-z=62x-3y+2z=2-5x+2y-4z=1

(b) Show that the line of intersection, *L*, of the planes x + y - z = 6 and 2x - 3y + 2z = 2 has parametric equations

 $x = \lambda$ $y = 4\lambda - 14$ $z = 5\lambda - 20.$

(c) Find the acute angle between line L and the plane -5x + 2y - 4z = 1.

<u>2010</u>

Given $\underline{u} = -2\underline{i} + 5\underline{k}$, $\underline{v} = 3\underline{i} + 2\underline{j} - \underline{k}$ and $\underline{w} = -\underline{i} + \underline{j} + 4\underline{k}$. Calculate $\underline{u} \cdot (\underline{v} \times \underline{w})$.

<u>2011</u>

The lines L_1 and L_2 are given by the equations $\frac{x-1}{k} = \frac{y}{-1} = \frac{z+3}{1}$ and $\frac{x-4}{1} = \frac{y+3}{1} = \frac{z+3}{2}$ respectively. Find (a) The value of k for which L_1 and L_2 intersect and the point of intersection.

(b) The acute angle between L_1 and L_2 .

<u>2012</u>

Obtain an equation for the plane passing through the points P(-2,1,-1), Q(1,2,3) and R(3,0,1).

(5 marks)

(6, 4 marks)

<u>2013</u>

- (a) Find an equation of the plane π_1 through the points A(0,-1,3), B(1,0,3) C(0,0,5).
- (b) π_2 is the plane through A with normal in the direction $-\underline{j} + \underline{k}$. Find an equation of the plane π_2 .
- (c) Determine the acute angle between the planes π_1 and π_2 .

(4, 2, 3 marks)

Advanced Higher Maths

national5maths.co.uk

(3, 1 marks)

<u>2014</u>

Three vectors $\overrightarrow{OA}, \overrightarrow{OB}$ and \overrightarrow{OC} are given by $\underline{u}, \underline{v}$ and \underline{w} where $\underline{u} = 5\underline{i} + 13\underline{j}, \ \underline{v} = 2\underline{i} + \underline{j} + 3\underline{k}, \ \underline{w} = \underline{i} + 4\underline{j} - \underline{k}.$ Calculate $\underline{u}.(\underline{v} \times \underline{w}).$ Interpret your result geometrically.

<u>2015</u>

A line L_1 , passes through the point P(2,4,1) and is parallel to

$$\underline{u}_1 = \underline{i} + 2j - \underline{k}$$

and a second line, L_2 , passes through Q(-5,2,5) and is parallel to

$$\underline{u}_2 = -4\underline{i} + 4\underline{j} + \underline{k} \,.$$

(a) Write down the vector equations for L_1 and L_2 .

(b) Show that the lines L_1 and L_2 intersect and find their point of intersection.

(c) Determine the equation of the plane containing L_1 and L_2 .

(2, 4, 4 marks)