

Further Differentiation

<u>2001</u>

(1) Differentiate with respect to x.

(a) $f(x) = (2+x) \tan^{-1} \sqrt{x-1}$, x > 1

(b)
$$g(x) = e^{\cot 2x}$$
, $0 < x < \frac{\pi}{2}$ (4, 2 marks)

(2) A curve has equation $xy + y^2 = 2$.

(a) Use implicit differentiation to find
$$\frac{dy}{dx}$$
 in terms of x and y.

(b) Hence find an equation of the tangent to the curve at the point (1,1).

<u>2002</u>

(1) A curve is defined by the parametric equations

 $x = t^2 + t - 1$, $y = 2t^2 - t + 2$

for all *t*. show that the point A(-1,5) lies on the curve and obtain an equation of the tangent to the curve at the point *A*.

(6 marks)

(2) Given $y = (x+1)^2 (x+2)^{-4}$ and x > 0, use logarithmic differentiation to show that $\frac{dy}{dx}$ can be expressed in the form $\left(\frac{a}{x+1} + \frac{b}{x+2}\right)y$, stating the values of the constants aand b. (3 marks)

<u>2003</u>

(1) (a) Given $f(x) = x(1+x)^{10}$, obtain f'(x) and simplify your answer.

(b) Given $y = 3^x$, use logarithmic differentiation to obtain $\frac{dy}{dx}$ in terms of x.

(3, 3 marks)

(2) The equation $y^3 + 3xy = 3x^2 - 5$ defines a curve passing through the point A(2,1). Obtain an equation for the tangent to the curve at A.

www.national5maths.co.uk

2004

(1) (a) Given $f(x) = \cos^2 x \ e^{\tan x}$, $\frac{-\pi}{2} < x < \frac{\pi}{2}$, obtain f'(x) and evaluate $f'\left(\frac{\pi}{4}\right)$.

(b) Differentiate
$$g(x) = \frac{\tan^{-1} 2x}{1 + 4x^2}$$
. (4, 3 marks)

(2) A curve is defined by the equations $x = 5\cos\theta$, $y = 5\sin\theta$, $(0 \le \theta \le 2\pi)$. Use parametric differentiation to find $\frac{dy}{dx}$ in terms of θ .

Find the equation of the tangent to the curve at the point where $\theta = \frac{\pi}{4}$.

(2, 3 marks)

(4 marks)

<u>2005</u>

Given the equation $2y^2 - 2xy - 4y + x^2 = 0$ of a curve, obtain the x coordinate of each point at which the curve has a horizontal tangent.

<u>2006</u>

(1) Differentiate, simplifying your answers:

(a) $2 \tan^{-1} \sqrt{1+x}$, where x > -1; (b) $\frac{1+\ln x}{3x}$, where x > 0. (3, 3 marks)

(2) Given xy - x = 4, use implicit differentiation to obtain $\frac{dy}{dx}$ in terms of x and y.

Hence obtain $\frac{d^2 y}{dx^2}$ in terms of x and y. (2, 3 marks)

<u>2007</u>

A curve is defined by the parametric equations $x = \cos 2t$, $y = \sin 2t$, $0 < t < \frac{\pi}{2}$.

(a) Use parametric differentiation to find $\frac{dy}{dx}$.

Hence find the equation of the tangent when $t = \frac{\pi}{9}$.

(b) Obtain an expression for $\frac{d^2 y}{dx^2}$ and hence show that $\sin 2t \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = k$, where k is an integer. State the value of k.

(5, 5 marks)

<u>2008</u>

- (1) (a) Differentiate $f(x) = \cos^{-1}(3x)$ where $\frac{-1}{3} < x < \frac{1}{3}$.
 - (b) Given $x = 2 \sec \theta$, $y = 3 \sin \theta$, use parametric differentiation to find $\frac{dy}{dx}$ in terms of θ . (2, 3 marks)
- (2) A curve is defined by the equation $xy^2 + 3x^2y = 4$ for x > 0 and y > 0. Use implicit differentiation to find $\frac{dy}{dx}$. Hence find an equation of the tangent to the curve where x = 1. (3, 3 marks)

<u>2009</u>

- (1) (a) Given $f(x) = (x+1)(x-2)^3$, obtain the values of x for which f'(x) = 0.
 - (b) Calculate the gradient of the curve defined by $\frac{x^2}{y} + x = y 5$ at the point (3, -1).
- (3, 4 marks)
- (2) The curve $y = x^{2x^2+1}$ is defined for x > 0. Obtain the values of y and $\frac{dy}{dx}$ at the point where x = 1.

(5 marks)

(4, 3, 3 marks)

(3 marks)

<u>2010</u>

Given $y = t^3 - \frac{5}{2}t^2$ and $x = \sqrt{t}$ for t > 0, use parametric differentiation to express $\frac{dy}{dx}$ in terms of t in simplified form.

Show that $\frac{d^2y}{dx^2} = at^2 + bt$, determining the values of the constants a and b.

Obtain an equation for the tangent to the curve which passes through the point of inflexion.

<u>2011</u>

Obtain $\frac{dy}{dx}$ when y is defined as a function of x by the equation $y + e^y = x^2$.

<u>2012</u>

(1) The radius of a cylindrical column of liquid is decreasing at the rate of $0 \cdot 02ms^{-1}$, while the height is increasing at the rate of $0 \cdot 01ms^{-1}$. Find the rate of change of the volume when the radius is $0 \cdot 6$ metres and the height is 2 metres. (Recall that the volume of a cylinder is given by $V = \pi r^2 h$.) (5 marks)

(2) A curve is defined parametrically, for all t, by the equations

 $x = 2t + \frac{1}{2}t^2$, $y = \frac{1}{3}t^3 - 3t$. $dy = \frac{1}{2}t^2 - 3t$.

Obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ as functions of t.

Find the values of t at which the curve has stationary points and determine their nature. Show that the curve has exactly two points of inflexion.

(5, 3, 2 marks)

<u>2013</u>

A curve has equation $x^2 + 4xy + y^2 + 11 = 0$.

Find the values of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point (-2,3). (6 marks)

<u>2014</u>

(1) Differentiate
$$y = \tan^{-1}(3x^2)$$
.
(3) Given $x = \ln(1+t^2)$, $y = \ln(1+2t^2)$ use parametric differentiation to find
 $\frac{dy}{dx}$ in terms of t .
(3) Given $e^y = x^3 \cos^2 x$, $x > 0$, show that $\frac{dy}{dx} = \frac{a}{x} + b \tan x$, for some constants a and b
State the values of a and b .
(3) marks)

<u>2015</u>

(1) The equation $x^4 + y^4 + 9x - 6y = 14$ defines a curve passing through the point A(1,2). Obtain the equation of the tangent to the curve at A. (4 marks)

(2) For
$$y = 3^{x^2}$$
, obtain $\frac{dy}{dx}$. (3 marks)

(3) Given
$$x = \sqrt{t+1}$$
 and $y = \cot t$, $0 < t < \pi$, obtain $\frac{dy}{dx}$ in terms of t .

(3 marks)

