

Further Differential Equations

<u>2001</u>

(1) Find the solution of the following differential equation:

$$\frac{dy}{dx} + \frac{y}{x} = x, \qquad x > 0$$
 (4 marks)

(2) Find the general solution of the following differential equation:

$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} - 3y = 6x - 1$$
 (5 marks)

<u>2002</u>

Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 4\cos x$$

Hence determine the solution which satisfies y(0) = 0 and y'(0) = 1. (6, 4 marks)

<u>2003</u>

Solve the differential equation

$$\frac{d^2 y}{dx^2} - 4\frac{dy}{dx} + 4y = e^x$$

given that $y = 2$ and $\frac{dy}{dx} = 1$, when $x = 0$. (10 marks)

<u>2004</u>

(a) A mathematical biologist believes that the differential equation $x\frac{dy}{dx} - 3y = x^4$ models a process. Find the general solution of the differential equation.

Given that y = 2 when x = 1, find the particular solution, expressing y in terms of x.

(5, 2 marks)

(b) The biologist subsequently decides that a better model is given by the equation

$$y\frac{dy}{dx} - 3x = x^4$$
.
Given that $y = 2$ when $x = 1$, obtain y in terms of x. (4 marks)

<u>2005</u>

Obtain the general solution of the differential equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 20\sin x$

Hence find the particular solution for which y = 0 and $\frac{dy}{dx} = 0$ when x = 0. (7, 3 marks)

<u>2006</u>

Solve the differential equation

 $\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$ given that when x = 0, y = 0 and $\frac{dy}{dx} = 2$. (6 marks)

<u>2007</u>

Obtain the general solution of the equation $\frac{d^2 y}{dx^2} + 6\frac{dy}{dx} + 9y = e^{2x}$ (6 marks)

<u>2008</u>

Obtain the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 2x^2$$

Given that $y = \frac{1}{2}$ and $\frac{dy}{dx} = 1$, when x = 0, find the particular solution. (7, 3 marks)

<u>2009</u>

(a) Solve the differential equation

$$\left(x+1\right)\frac{dy}{dx} - 3y = \left(x+1\right)^4$$

given that y = 16 when x = 1, expressing the answer in the form y = f(x).

(b) Hence find the area enclosed by the graphs of y = f(x), $y = (1-x)^4$ and the x-axis.

(6, 4 marks)

<u>2010</u>

Obtain the general solution of the equation

$$\frac{d^2 y}{dx^2} + 4\frac{dy}{dx} + 5y = 0.$$

Hence obtain the solution for which y = 3 when x = 0 and $y = e^{-\pi}$ when $x = \frac{\pi}{2}$.

(4, 3 marks)

(4, 7 marks)

<u>2011</u>

Find the general solution of the differential equation

$$\frac{d^2 y}{dx^2} - \frac{dy}{dx} - 2y = e^x + 12$$

Find the particular solution for which $y = \frac{-3}{2}$ and $\frac{dy}{dx} = \frac{1}{2}$ when $x = 0$. (7, 3 marks)

<u>2012</u>

(a) Express $\frac{1}{(x-1)(x+2)^2}$ in partial fractions.

(b) Obtain the general solution of the differential equation

$$(x-1)\frac{dy}{dx} - y = \frac{x-1}{(x+2)^2}$$

expressing your answer in the form y = f(x).

<u>2013</u>

Solve the differential equation

$$\frac{d^2 y}{dx^2} - 6\frac{dy}{dx} + 9y = 4e^{3x}$$
, given that $y = 1$ and $\frac{dy}{dx} = -1$ when $x = 0$. (11 marks)

<u>2014</u>

Find the solution y = f(x) to the differential equation

$$4\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = 0, \text{ given that } y = 4 \text{ and } \frac{dy}{dx} = 3 \text{ when } x = 0.$$
 (6 marks)

<u>2015</u>

Solve the second order differential equation

$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + 10y = 3e^{2x}$$
 given that when $x = 0$, $y = 1$ and $\frac{dy}{dx} = 0$.

(10 marks)