Advanced Higher Maths

(4 marks)

Binomial Theorem

<u>2001</u>

Expand $\left(x^2 - \frac{2}{x}\right)^4$, $x \neq 0$ and simplify as far as possible. (5 marks)

<u>2004</u>

Obtain the binomial expansion of $(a^2 - 3)^4$. (3 marks)

<u>2007</u>

Express the binomial expansion of $\left(x-\frac{2}{x}\right)^4$ in the form $ax^4 + bx^2 + c + \frac{d}{x^2} + \frac{e}{x^4}$ for integers a, b, c, d and e. (4 marks)

<u>2008</u>

Write down and simplify the general term in the expansion of	$\left(x^2 + \frac{1}{x}\right)^{10}.$
Hence or otherwise, obtain the term in x^{14} .	(3, 2 marks)

<u>2009</u>

- (a) Write down the binomial expansion of $(1+x)^5$.
- (b) Hence show that 0.9^{5} is 0.59049. (1, 2 marks)

<u>2010</u>

Show that

$$\binom{n+1}{3} - \binom{n}{3} = \binom{n}{2}$$

where the integer n is greater than or equal to 3.

<u>2011</u>

Use the binomial theorem to expand $\left(\frac{1}{2}x-3\right)^4$ and simplify your answer. (3 marks)

<u>2012</u>

Write down and simplify the general term in the expansion of $\left(2x - \frac{1}{x^2}\right)^2$. Hence, or otherwise, obtain the term independent of x. (3, 2 marks)

Advanced Higher Maths

(5 marks)

<u>2013</u>

Write down the binomial expansion of $\left(3x - \frac{2}{x^2}\right)^4$ and simplify your answer. (4 marks)

<u>2014</u>

Write down and simplify the general term in the expression $\left(\frac{2}{x} + \frac{1}{4x^2}\right)^{10}$.

Hence, or otherwise, obtain the term in $\frac{1}{x^{13}}$.

<u>2015</u>

① Use the binomial theorem to expand and simplify

$$\left(\frac{x^2}{3} - \frac{2}{x}\right)^5.$$
 (4 marks)

(2) Show that $\binom{n+2}{3} - \binom{n}{3} = n^2$, for all integers, *n*, where $n \ge 3$. (4 marks)