Advanced Higher Maths

Further Sequences & Series

2001

Find the first four terms in the Maclaurin Series for $(2+x)\ln(2+x)$.

2002

Find the Maclaurin expansion of $f(x) = \ln(\cos x)$, $0 \le x \le \frac{\pi}{2}$, as far as the term in x^4

2003

Obtain t Hence w

2004

Obtain t

<u>2005</u>

Write do Deduce Hence o

2007

Find the Deduce the Maclaurin Series for $f(x) = \frac{1}{2}\cos 2x$ as far as the term in x^4 . Hence write down the first three non-zero terms of the series for f(3x).

2008

Obtain the first three non-zero terms in the Maclaurin expansion of $x \ln(2+x)$. Hence, or otherwise, deduce the first three non-zero terms in the Maclaurin expansion of $x \ln(2-x)$. Hence obtain the first two non-zero terms in the Maclaurin expansion of $x \ln(4-x^2)$.

(3, 2, 2 marks)

(2, 2, 1 marks)

(4 marks)

(5 marks)

he Maclaurin Series for
$$f(x) = \sin^2 x$$
 up to the term in x^4 .
(5 marks)
he first three non-zero terms in the Maclaurin Series of $f(x) = e^x \sin x$.
(5 marks)
bown the Maclaurin expansion of e^x as far as the term in x^4 .
the Maclaurin expansion of e^{x^2} as far as the term in x^4 .
the Maclaurin expansion of e^{x^2} as far as the term in x^4 .
(2, 1, 3 marks)
Maclaurin Series for $\cos x$ as far as the term in x^4 .

Advanced Higher Maths

<u>2009</u>

Express $\frac{x^2 + 6x - 4}{(x+2)^2(x-4)}$ in partial fractions. Hence, or otherwise, obtain the first 3 non-zero terms in the

Maclaurin expansion of $\frac{x^2 + 6x - 4}{(x+2)^2(x-4)}$. (4, 3, 2 marks)

<u>2010</u>

Obtain the first three non-zero terms in the Maclaurin expansion of $(1 + \sin^2 x)$.

(4 marks)

<u>2011</u>

Obtain the first four terms in the Maclaurin series of $\sqrt{1+x}$ and hence write down the first four terms in the Maclaurin series of $\sqrt{1+x^2}$.

Hence obtain the first four terms in the Maclaurin series of $\sqrt{(1+x)(1+x^2)}$.

```
(4, 2 marks)
```

<u>2012</u>

Write down the Maclaurin expansion of e^x as far as the term in x^3 . Hence, or otherwise, obtain the Maclaurin expansion of $(1+e^x)^2$ as far as the term in x^3 .

(1, 4 marks)

<u>2013</u>

Write down the sums to infinity of the geometric series

 $1 + x + x^2 + x^3 + \dots$

and

 $1 - x + x^2 - x^3 + \dots$ valid for |x| < 1.

Assuming that it is permitted to integrate an infinite series term by term, show that, for |x| < 1,

 $\ln\left(\frac{1+x}{1-x}\right) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots\right).$

Show how this series can be used to evaluate $\ln 2$. Hence determine the value of $\ln 2$ correct to 3 decimal places.

(7, 3 marks)

Advanced Higher Maths

<u>2014</u>

Give the first three non-zero terms of the Maclaurin series for $\cos 3x$. Write down the first four terms of the Maclaurin series for e^{2x} . Hence, or otherwise, determine the Maclaurin series for $e^{2x}\cos 3x$ up to, and including, the term in x^3 .

(2, 1, 3 marks)