

AH Mathematics

Practice Assessment Three

Applications of Algebra & Calculus

Applications of Algebra and Calculus Assessment Standard 1.1

1 Expand $(4x + 3)^5$ using the Binomial theorem. (3)

Applications of Algebra and Calculus Assessment Standard 1.2

- Complex numbers are defined as follows: $z_1 = p + i$ and $z_2 = 3 5i$. Express the following in the form a + ib:
 - a) $z_1 z_2$

b)
$$\frac{z_1}{z_2}$$
 (3)

3 An arithmetic sequence is given by: 7, 25, 43, 61, ...

Find:

- a) the 16th term of the sequence. (2)
- b) the sum of the first 16 terms. (2)
- 4 A geometric sequence is given by: 4, 36, 324, 2916, ...

Find:

- a) the 5^{th} term of the sequence. (2)
- b) the sum of the first 5 terms. (2)
- 5 Find the first four terms of the Maclaurin series for $f(x) = e^{6x}$. (3)

Applications of Algebra and Calculus Assessment Standard 1.3

6 Evaluate
$$\sum_{k=1}^{20} (6k-5)$$
. (3)

7 Use proof by induction to show that, for all $n \ge 1$, $n \in \mathbb{N}$

$$\sum_{r=1}^{n} 10r = 5n (n+1) . ag{5}$$

Applications of Algebra and Calculus Assessment Standard 1.4

$$8 f(x) = \frac{x^2 - 2x - 1}{x - 4}, x \in \mathbb{R} : x \neq 4$$

For the graph y = f(x):

- a) Give the equation of the vertical asymptote. (1)
- b) Show that there is a non-vertical asymptote and state the equation. (2)
- 9 Find the coordinates of the point of inflection on the graph of $f(x) = 8x^3 + 48x^2 11x$. (4)
- 10 Given that $f(x) = \sin(2x)$, sketch the graph of |6f(x)| where $0 \le x \le \pi$. (2)

Applications of Algebra and Calculus Assessment Standard 1.5

11 A car begins travelling from rest along a straight road. Its velocity, v(t) metres per second, is given by

$$v\left(t\right) = \frac{400t}{7t + 15}.$$

Find the acceleration of the car at 5 seconds. (4)

12 The area bounded by the curve $y = \sqrt{1 + \cos 3x}$ between x = 0

and $x = \frac{\pi}{6}$ is rotated 2π radians about the x – axis.

Determine the exact value of the volume of the solid formed. (4)

Applications of Algebra and Calculus (Practice 3) - Sol's

1)
$$(4 \times (+3)^{5}$$

= $\sum_{r=0}^{5} (5)(4 \times (-1)^{5-r} 3^{r}$
= $(5)(4 \times (-1)^{5} 3^{\circ} + (5)(4 \times (-1)^{4} 3^{'} + (5)(4 \times (-1)^{3} 3^{2} + (5)(4 \times (-1)^{2} 3^{3} + (5)(4 \times (-1)^{3} 3^{4} + (5)(4 \times (-1)^{3} 3^{5} + (5)(4 \times (-1)^{3} 3^{4} + (5)(4 \times (-1)^{3} 3^{5} + (5)(4$

$$(4x+3)^{5} = 1024x^{5} + 3840x^{4} + 5760x^{3} + 4320x^{2} + 1620x + 243$$

2)
$$Z_1 = p + i$$
, $Z_2 = 3 - 5i$

(a)
$$7,72 = (p+i)(3-5i)$$

= $3p+3i-5pi-5i^2$
= $3p+3i-5pi+5$

$$(3p+5) + (3-5p)$$

(b)
$$\frac{z_1}{z_2} = \frac{p+c}{3-5i} \times (3+5i)$$

$$= \frac{(p+c)(3+5c)}{(3-5c)(3+5c)}$$

$$= \frac{3p+3c+5pc+5c^2}{9+25}$$

$$= \frac{(3p-5)+(3+5p)c}{34}$$

$$\frac{2_{1}}{2^{2}} = \frac{3\rho - 5}{34} + \frac{3 + 5\rho}{34}$$

(a)
$$a = 7$$
, $d = 18$, $u_n = a + (n-1)d$

$$\exists \quad u_n = 18n - 11$$

$$u_{16} = 18.16 - 11$$

(b)
$$S_n = \frac{n}{2} (2a + (n-1)cl)$$

:
$$S_n = \frac{h}{2} (2(7) + (n-1)/8)$$

$$\Rightarrow S_n = \frac{n}{2} (14 + 18n - 18)$$

$$\Rightarrow S_n = \frac{n}{2} (18n - 4)$$

$$\ni S_n = h(9n-2)$$

$$S_{16} = 16(9.16 - 2)$$

$$= |S_{16}| = |2|272$$

(a)
$$a = 4$$
, $r = 9$

$$U_n = a \cdot r^{n-1}$$

$$\int_{\Omega} \int_{\Omega} \int_{\Omega} \frac{\alpha(r^n - 1)}{r^{n-1}}$$

$$S_{n} = \frac{4(9^{n}-1)}{9-1}$$

$$\Rightarrow S_n = \frac{4(9^n - 1)}{8}$$

$$S_5 = \frac{(9^5 - 1)}{2}$$

$$\Rightarrow S_5 = 29524$$

5)
$$f(x) = e^{6x}$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$e^{6x} = 1 + (6x) + \frac{(6x)^{2}}{2} + \frac{(6x)^{3}}{6} + \dots$$

$$\Rightarrow e^{6x} = 1 + 6x + \frac{36x^{2}}{2} + \frac{216x^{3}}{6} + \dots$$

$$\Rightarrow e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 36x^{3} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 18x^{2} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 18x^{2} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 18x^{2} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 18x^{2} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 18x^{2} + \dots$$

$$f(x) = e^{6x} = 1 + 6x + 18x^{2} + 18x^{2} + \dots$$

$$f(x$$

= 60.21-100

= [160]

7)
$$P(n): \sum_{r=1}^{n} 10r = 5n(n+1)$$

Base Case
$$(n = 1)$$
:

 $L HS = \sum_{r=1}^{1} 10r = 10.1 = 10$

$$RHS = 5.1.2 = 10$$

Inductive Step:

Assume P(k) is true, i.e., $\sum_{r=1}^{k} 10r = 5k(k+1)$.

$$\frac{RTP:}{\sum_{r=1}^{k+1} lor} = 5(k+1)(k+2)$$

$$\sum_{r=1}^{k+1} 10r = \left(\sum_{r=1}^{k} 10r\right) + 10(k+1)$$

$$= 5k(k+1) + 10(k+1)$$

$$= 5(k+1)(k+2)$$

So, P(k) true $\Rightarrow P(k+1)$ true; together with P(1) true, the $PMI \Rightarrow P(n)$ is true $\forall n \in \mathbb{N}$.

8)
$$f(x) = \frac{3c^2 - 2x - 1}{3c - 4}$$

(a) Vertical asymptote:
$$sc = 4$$

:
$$f(x) = x + 2 + \frac{7}{x - 4}$$

: Non-vertical asymptote:
$$y = oc + 2$$

9)
$$f(x) = 8x^3 + 48x^2 - 11x$$

For
$$SPs$$
, $f'(x) = 0$; So ,

$$2 + 2x^{2} + 96x - 11 = 0$$

$$D = 10 272 > 0$$
. Hence, there are $2 SPs$.

$$f'(-2) = 2 + 96(-2) - 11$$

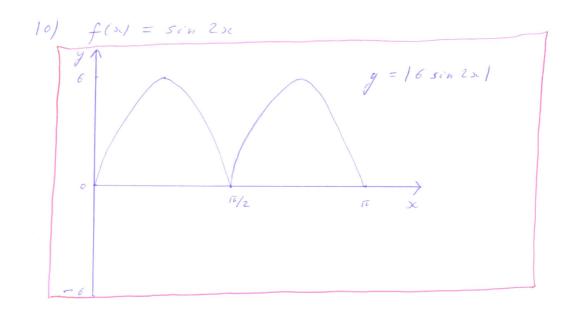
$$f'(-2) = -107 \neq 0$$

$$So$$
, $5x = -2$ is not a SP .

$$f(-2) = 8(-8) + 48(4) - 11(-2)$$

$$f(-2) = 150$$

$$\therefore Por T: (-2, 150)$$



$$11) \qquad V(t) = \frac{400t}{7t+15}$$

$$a(t) = V'(t) = \frac{400(7t+15) - 7(400t)}{(7t+15)^2}$$

$$\therefore \alpha(t) = \frac{2800t + 6000 - 2800t}{(7t+15)^2}$$

$$\Rightarrow a(t) = \frac{6000}{(7t+15)^2}$$

$$\therefore \ a(5) = \frac{6000}{(35+15)^2}$$

$$=$$
 $a(5) = \frac{6000}{2500}$

$$\Rightarrow \left| a(s) = \frac{12}{5} \left(= 2 \cdot 4 \right) m s^{-2} \right|$$

$$\Rightarrow V = \pi \left[3c + \frac{1}{3} \sin 3sc \right]^{\pi/6}$$

$$\Rightarrow V = \pi \left(\frac{\pi}{6} + \frac{1}{3} \sin \frac{\pi}{2} \right) - \pi \left(o + \frac{1}{3} \sin o \right)$$

$$\exists \ V = \frac{\pi^2}{6} + \frac{\pi}{3} \cdot 1 - \pi, 0 - \frac{\pi}{3} \cdot 0$$

$$\Rightarrow V = \frac{\pi^2}{6} + \frac{\pi}{3}$$

$$\exists V = \frac{\pi}{6}(\pi + 2)$$